

Präzisionsdüsen für die Chemische Industrie

PROZESSOPTIMIERUNG MIT DÜSENTECHNOLOGIE

Wer im Wettbewerb bestehen will, muss seine Produktionsverfahren ständig optimieren. Auch in automatisierten Prozessen bieten vermeintlich vernachlässigbare Details oft enorme Optimierungspotentiale. Die Düsenund Sprühtechnologie ist dafür ein gutes Beispiel. Die besten **Ergebnisse werden** dort erzielt, wo Düsentechnologie optimal auf individuelle Anforderungen abgestimmt ist. Voraussetzung ist ein umfassendes Verständnis der beteiligten Prozesse gerade auch in der Chemie, Bei Lechler pflegen wir diese Kompetenz seit mehr als 135 Jahren.

Schon bei der Gründung seines Handelshauses im Jahr 1879 setzte Paul Lechler ganz auf die Chemie. Nachdem anfangs technische Produkte, Maschinenöle und Holzschutzmittel im Mittelpunkt standen, kam 1905 der Exklusivvertrieb des Schutzanstriches Inertol hinzu. Bis 1919 ergänzte er dieses Portfolio um eigenproduzierte Schutzanstriche. 1961 wurden alle chemischen Produkte schließlich in einem eigenen Unternehmen gebündelt.

Heute verfügt Lechler über ein breites Produktprogramm für die prozesstechnische Optimierung. Einen ersten Eindruck bieten Ihnen die folgenden Seiten.

Mit Lechler stimmt die Chemie

Chemie bestimmt unsere Unternehmensgeschichte von Anfang an. In vielen Jahrzehnten erwuchs daraus ein einzigartiges Verständnis von Sprüh- und Zerstäubungsprozessen in vielseitigen Anwendungen bei verschiedensten Drücken, Temperaturen und Atmosphären.

1879

Firmengründung durch Paul Lechler

1893

Patent für Flüssigkeitszerstäubung

1958

Verlagerung der Produktion von Bad Cannstatt nach Feuerbach

1962

Gründung von Vertriebsbüros in Deutschland

Firmenbestehen:

14 Jahre

79 Jahre

83 Jahre

Unsere Produkte zeichnen sich durch höchste Präzision und Reproduzierbarkeit aus. Heute bieten wir nicht nur eine in ihrer Art einmalige Auswahl an schnell verfügbaren Standarddüsen, sondern auch das Know-how für maßgeschneiderte Produkte.

Lechler verfügt über ein breites Produktprogramm für die prozesstechnische Optimierung. Darüber hinaus beraten wir Sie gerne persönlich, wie Sie Ihre Prozesse noch effizienter gestalten können.

Der Standard

Im Lechler-Serienkatalog "Präzisionsdüsen und Zubehör" finden Sie eine breit gefächerte Auswahl hochwertiger, tausendfach in der Praxis bewährter Düsen. Aufgrund der großen Produktionsmengen sind sie preisgünstig und schnell für die vielfältigen Aufgaben der chemischen und physikalischen Technik verfügbar.

Prozesssicherheit **INHALT**

Anwendungsgebiete

Planungskriterien

Düsenübersicht

Zweistoffdüsen

Hohlkegeldüsen

Vollkegeldüsen

Tankreinigungsdüsen

Produkte

Seite

4-7

8-11

12-13

14-15

16-17

18-23

27-33

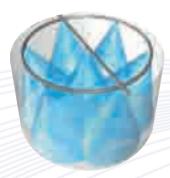
14

Kostenersparnis

Spezielle Lösungen

Erfahrung

Lösungen


Kundenspezifische

Standardprodukte reichen für großindustrielle Rahmenbedingungen oft nicht aus. In dieser Broschüre stellen wir Ihnen weitere Lechler-Düsen vor, die wir nur auf Bestellung für die besonderen Belange der chemischen und petrochemischen Industrie herstellen. Sollten Sie auch hier nicht fündig werden: Kein Problem. Wir sind gerne bereit die optimale Düse für Ihre Anwendung zu entwickeln. Bitte berücksichtigen Sie bei den hier vorgestellten Düsen die fertigungsbedingten Lieferzeiten und Kosten.

Unsere Kompetenz

Lechler ist Technologieführer auf dem Gebiet der Düsen und Sprühtechnologie. Unsere Produkte und Lösungen werden weltweit in unterschiedlichsten Branchen eingesetzt - gerade auch in der chemischen Industrie.

Unsere Anwendungstechniker kennen die Praxis aus vielen erfolgreichen Applikationen und sind deshalb kompetente Partner bei der Entwicklung und Realisierung beispielhafter Lösungen.

Dieses Know-how und unsere hervorragenden technischen Möglichkeiten in Forschung, Konstruktion und Fertigung geben Ihnen die Sicherheit, die heute in der Prozessentwicklung unerlässlich ist. Lassen Sie sich in einem unverbindlichen Informationsgespräch überzeugen.

Konzentration aller Vertriebs- und Verwaltungsaktivitäten im neuen **Lechler Haus in Fellbach**

94 Jahre

1988

Gründung des Geschäftsbereichs Umwelttechnik

Produktion, Vertrieb und Verwaltung in Metzingen 2010

Eröffnung der neuen Fertigungshalle mit 13.000 m² in Metzingen

109 Jahre 116 Jahre 131 Jahre

LECHLER DÜSEN WERDEN IN VIELEN BEREICHEN DER CHEMISCHEN INDUSTRIE EINGESETZT

Anwendungsgebiete von A bis Z

Abgasbehandlung, Adiabatische Kühlung, Absorption, Adsorption

Befeuchtung, Bandkühlung, Behälterreinigung, Beschichtung, Brandschutz

Cryotechnik, Coating, Cleaning in Place (CIP)

Dekontamination, Destillation, Desinfektion, Dosierung, Dampfkühlung

Entstaubung, Entgasung, Einspritzkühlung, Entstickung

Flashverdampfung, Filterreinigung, Füllkörperberieselung, Filterkuchenwäsche

Gasbehandlung, Granulation

Hochdruckreinigung

Imprägnierung

Jet Cutting

Kondensation, Kühlung, Kammerfilterpressen

Luftbefeuchtung, Löscheinrichtungen, Luftkühlerertüchtigung

Mischer

Notduschen

Ofenkühlung, Oberflächenchemie

Pelletierung, Parfümierung, Präparationsauftrag

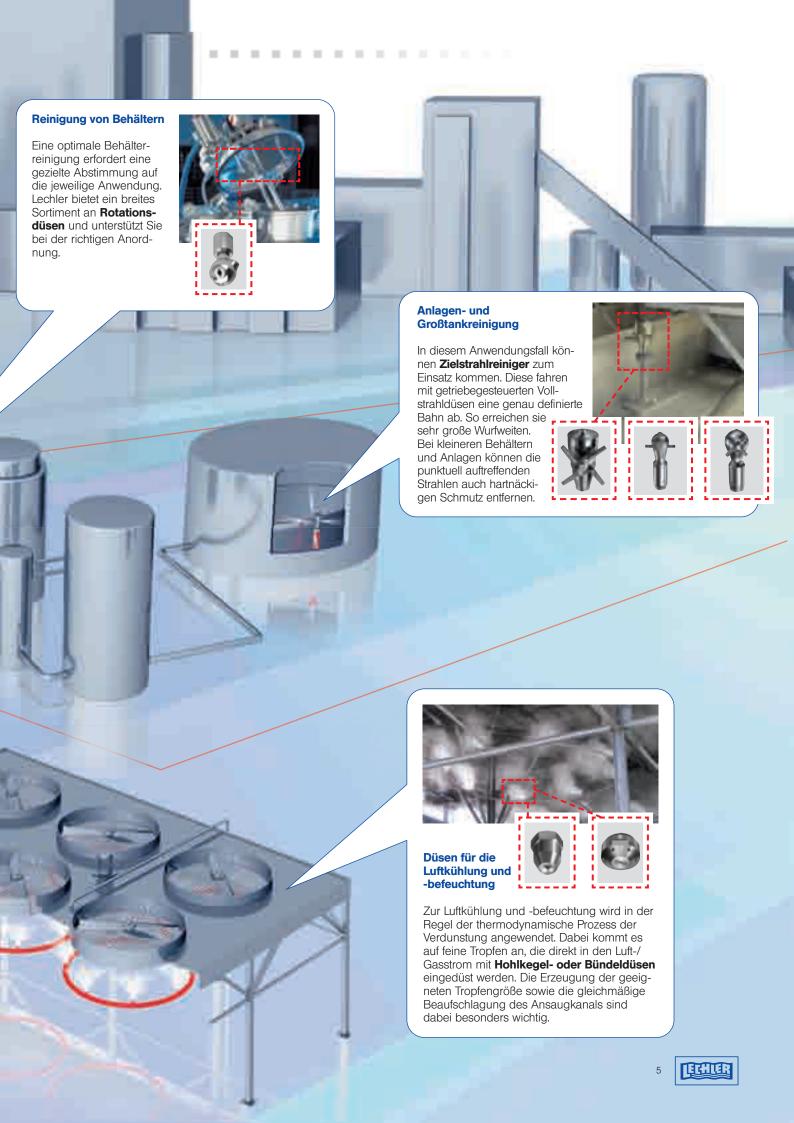
Quenching

Regenvorhänge, Reaktorreinigung, Rauchgasentschwefelung

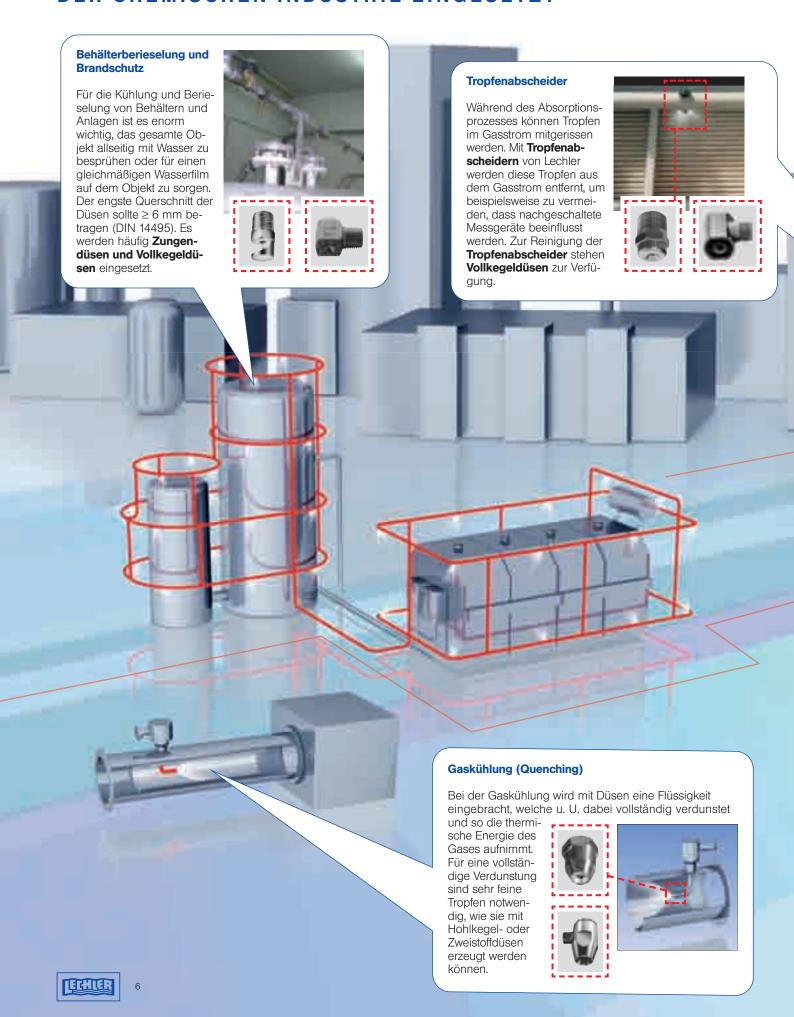
Sprühtrocknung, Schaumniederschlag, Scrubber, Staubbekämpfung, Siebreinigung

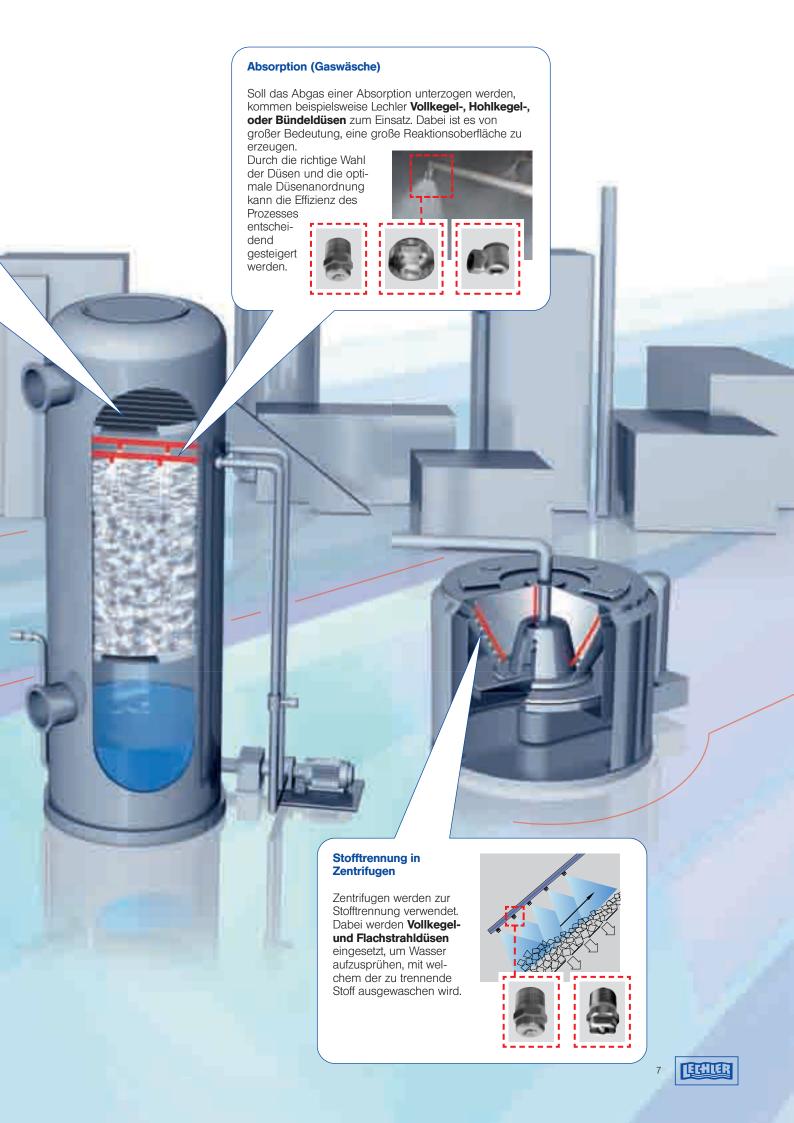
Tankreinigung, Trennmittelauftrag, Temperierung, Trocknung, Tropfenabscheider

Unterkühlung, Übersättigung


Venturiwäscher, Verdampfer

Wäscher, Wasseraufbereitung, Wirbelschichttechnik


Zentrifugenreinigung, Zyklonabscheider, Zerstäubungstrocknung


Ihre Aufgabe ist noch nicht dabei? Sprechen Sie uns an, wir beraten Sie gerne!

LECHLER DÜSEN WERDEN IN VIELEN BEREICHEN DER CHEMISCHEN INDUSTRIE EINGESETZT

AUF WAS SIE BEI IHRER PLANUNG ACHTEN SOLLTEN

Kriterien für die Düsenauswahl:

- 1 Zerstäubungsarten
- ② Volumenstrom, Strahlformen/-winkel, Sprühverhalten
- **③ Flüssigkeitsverteilung**
- (4) Viskosität
- (5) Gase
- **(6) Engster Querschnitt**
- 7 Tropfengrößen
- **8 Umgebungsbedingungen**
- **9 Werkstoffe**
- **10 Anschlüsse**
- (1) Verschleiß
- **12 Mechanische Reinigung**

Die wichtigsten Kriterien für Ihre Düsenauswahl haben wir nachfolgend zusammengestellt.

1 Zerstäubungsarten

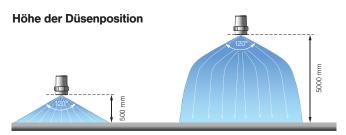
Einstoffdüsen versprühen kleine bis sehr große Flüssigkeitsmengen allein über den Druck. Sie sind daher vor allem für dünnflüssige (z. B. Wasser, Alkohole) bis leicht viskose Flüssigkeiten (z. B. Olivenöl) geeignet und produzieren je nach Strahlform, Druck und Volumenstrom feine bis sehr grobe Tropfen. Da nur ein Stoffstrom zu handhaben ist, sind Einstoffdüsen veraleichsweise einfach zu installieren und zu betreiben.

Die typischen Drücke liegen zwischen 0,5 und 20 bar. Höhere Differenzdrücke als 20 bar kommen bei Einstoffdüsen meist nur für die Zerstäubung zähflüssiger Produkte oder in der Reinigungstechnik zur Anwendung.

Abbildung 1: Verschiedene Sprühbilder

Zweistoffdüsen zerstäuben die Flüssigkeit unter Zuhilfenahme eines kompressiblen Mediums, meist Druckluft oder Dampf. Sie arbeiten im Bereich sehr geringer bis mittlerer Volumenströme und werden bevorzugt für die besonders feine Vernebelung oder die Zerstäubung höher viskoser Flüssigkeiten verwendet.

Es wird zwischen innenmischenden und außenmischenden Zweistoffdüsen unterschieden. Durch die Zusammenführung zweier unterschiedlicher Stoffströme ist der Einbau- und Betriebsaufwand größer als bei vergleichbaren Einstoffdüsen.


② Volumenstrom, Strahlformen/-winkel, Sprühverhalten

Sofern nicht anders vermerkt, beziehen sich die Angaben zu den Volumenströmen unserer Düsen immer auf Wasser. Die Umrechnung abweichender Flüssigkeitsdichten wird in unserem Serienkatalog erläutert. Wir bieten Einstoffdüsen, je nach Ausführung und Aufgabe, mit verschieden gestuften Strahlwinkeln von 0° (Vollstrahldüsen) bis 360° (Tankreinigungsdüsen) an. Die angegebenen Strahlwinkel gelten im Nahbereich der Düse und in ruhender Atmosphäre. Schwerkraft und Luftströmungen beeinflussen das Sprühbild.

Je nach Ausführung versprühen Einstoffdüsen die Flüssigkeit als Hohlkegel, Vollkegel oder als Flachstrahl.

Die Vollstrahldüse versprüht nicht, sondern bildet einen geschlossenen, punktförmia auftreffenden Strahl. Erst in einiger Entfernung beginnt der Strahl aufzureißen. Zweistoffdüsen haben aufgrund der hohen Austrittsgeschwindigkeit des kompressiblen Mediums geringe Strahlwinkel von 20° - 40°. Mit zunehmendem Abstand von der Düse wird das Sprühbild jedoch immer weniger scharf begrenzt. Zweistoffdüsen erzeugen in der Regel Vollkegeloder Flachstrahlsprühbilder.

Folgende Parameter beeinflussen das Strahlbild:

Obige Skizze verdeutlicht, welchen Einfluss die Höhe auf das Sprühbild hat.

Änderung des Düsendrucks Geringer Druck Optimaler Druck Hoher Druck

Nach oben sprühend

Nach unten sprühend

Horizontal sprühend

Abbildung 2: Sprühbilder unter verschiedenen Betriebsbedingungen und Einbausituationen

3 Flüssigkeitsverteilung

Für Prozesse wie Beschichtungsvorgänge ist die gleichmäßige Flüssigkeitsverteilung entscheidend. Dazu müssen mehrere Düsen nebeneinander angeordnet werden. Während eine einzelne Düse die Flüssigkeit parabelförmig verteilen würde, lässt sich durch mehrere, nebeneinander angeordnete Düsen eine nahezu gleichmäßige Verteilung mittels Überlappung erreichen.

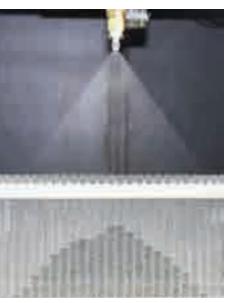


Abbildung 3: Flüssigkeitsverteilungsmessung

Messung der Verteilung

Die Flüssigkeitsverteilung in einer Ebene lässt sich mit Hilfe eines Verbunds von Plexiglaszylindern ermitteln. Die Füllstandsermittlung der einzelnen Zylinder läuft vollautomatisiert. Dieses Messverfahren kann auch die Flüssigkeitsverteilung einer Düse über einer sich bewegenden Messebene erfassen. So kann z. B. eine Förderbandbedüsung simuliert werden.

4 Viskosität

Eine zunehmende Viskosität der Flüssigkeit kann den Volumenstrom verringern, das Sprühbild verändern (kleinerer Sprühwinkel) und das Tropfenspektrum gröber werden lassen. Je nach Stoffeigenschaften kann man dem bis zu einem gewissen Maß durch höheren Druck entgegenwirken. Für sehr zähe Substanzen empfiehlt sich meist der Einsatz von Zweistoffdüsen. Ebenfalls kann es hilfreich sein, die Rheologie des Fluids in Betracht zu ziehen.

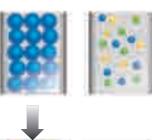


Abbildung 4: Zerstäubung von Gelatine mit einer Lechler ViscoMist Zweistoffdüse

5 Gase

Die Ausbringung von Gasen (z. B. Luft) ist grundlegend anders zu betrachten als die von Flüssigkeiten. Gase gehören zu den kompressiblen Fluiden, während man Flüssigkeiten zu den inkompressiblen Fluiden zählt.

Inkompressibel Kompressibel

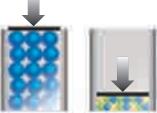
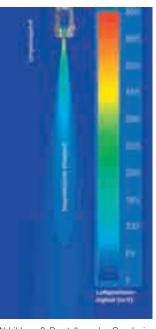



Abbildung 5: Kompressibilitätsverhalten.

Gase können mit nahezu allen Düsen ausgebracht werden, mit denen auch Flüssigkeiten zerstäubt werden. Allerdings kann die Strahlform von Gasen aufgrund der Kompressibilität und geringeren Dichte nicht in gleicher Weise geformt werden wie bei Flüssigkeiten.

Gase neigen dazu bei gewissen Bedingungen (Druck und Düsengeometrie) den Schallpegel deutlich zu erhöhen. Durch die Entwicklung von Mehrkanaldüsen mit speziell geformten Düsenöffnungen werden die lärmverursachenden Turbulenzen beim Austritt erheblich reduziert. Weiterhin wird durch diese Düsengeometrie die Blaskraft erhöht, bei gleichzeitiger Senkung des Luftverbauchs.

Die Geschwindigkeit von Gasen kann unter Umständen sehr hoch sein. Wird eine Düse mit einer gewissen Druckdifferenz beaufschlagt, so können im engsten Querschnitt oft Geschwindigkeiten von ca. 320 m/s entstehen. Diese Geschwindigkeit kann nach der Düse kurzzeitig sogar noch zunehmen. Das unten dargestellte Schaubild zeigt den Geschwindigkeitsverlauf in einer Strömungssimulation.

Links Wasser / rechts Luft

6 Engster Querschnitt

Das Verstopfungsrisiko einer Düse hängt maßgeblich von ihrem engsten Querschnitt ab (Ø E). Für einen reibungslosen Betrieb sollte die maximale Partikelgröße in der Flüssigkeit ein Drittel des engsten Querschnitts nicht überschreiten.

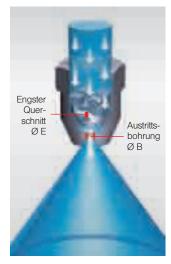


Abbildung 7: Engster Querschnitt

Hohl- und Vollkegeldüsen mit axialer Durchströmung haben im Innern einen Drallkörper. Hohl- und Vollkegeldüsen mit seitlichem Zulauf (Tangentialoder Exzenterbauweise) kommen ohne diesen aus und sind somit erheblich weniger verstopfungsgefährdet. Im Bereich der Flachstrahldüsen stellen Zungendüsen eine weniger verstopfungsanfällige Sonderbauform dar.

AUF WAS SIE BEI IHRER PLANUNG ACHTEN SOLLTEN

7 Tropfengrößen

Zweistoffdüsen können sehr feine bis feinste Tröpfchen erzeugen. Die Größe hängt vor allem vom Volumenstromverhältnis des verwendeten kompressiblen Mediums (m³/h) zur zerstäubten Flüssigkeit (l/min) ab: je größer das Verhältnis, umso feiner die Zerstäubung.

Bei **Einstoffdüsen** entscheiden dagegen Druck, Düsenbauart und Volumenstrom über das Tropfenspektrum. Steigender Druck bewirkt eine feinere Zerstäubung, meist aber nur bis zu einem bestimmten Niveau.

Abbildung 8: Tropfenmessung

Hohlkegeldüsen erzeugen bei gleichem Druck und Volumenstrom sehr feine bis feine Tropfen. Vollkegeldüsen liefern etwas gröbere Tropfenspektren und Flachstrahldüsen schließlich haben das gröbste Tropfenspektrum. Generell gilt: Innerhalb einer Baureihe und bei gegebenem Druck produzieren Düsen mit geringerem Volumenstrom feinere Tropfenspektren als Düsen mit höherem Volumenstrom.

8 Umgebungsbedingungen

Die Umgebung, in die eingedüst wird, ist ein entscheidendes Kriterium dafür, welchen Strahlwinkel, Druck, Material oder welche Tropfengröße man für den Prozess wählen sollte Wenn eine Düse von dem umgebenden Gas umströmt wird, kann dies einen direkten Einfluss auf die Flugbahn der Tropfen haben und somit auch auf den Prozess. Einflussfaktoren der Umgebung sind beispielsweise Druck und Temperatur, Gasart (z. B. Luft oder SO₂), Abmessungen (z. B. bei Behältern) oder sonstige Parameter.

Des Weiteren muss beispielsweise bei der Reinigung von Behältern unbedingt darauf geachtet werden, ob sich im Tank ein zündfähiges Gemisch bilden kann. Falls dies der Fall sein sollte, so können Lechler Tankreiniger mit ATEX-Zulassung verwendet werden.

Werkstoffe

Unsere Standard-Werkstoffe bei metallischen Düsen sind Messing und die Edelstähle AISI 303, AISI 316L oder AISI 316Ti. Seriendüsen aus Kunststoff werden zumeist aus PA, PVDF oder POM gefertigt. Für besondere mechanische, thermische oder chemische Belastungen bieten wir eine Vielzahl von Sonderwerkstoffen an, beispielsweise säure- oder hitzebeständige Edelstähle, Sonderlegierungen, Keramikwerkstoffe oder Kunststoffe wie PP, PE1000 oder PTFE.

Auch bei den Dichtungen gilt es, den optimalen Werkstoff zu wählen. Je nach Aufgabenstellung werden Viton, PTFE, EPDM oder EWP verarbeitet. Für Spezialfälle werden aber auch ausgefallenere Dichtungswerkstoffe wie Inconel oder Centellen eingesetzt.

10 Anschlüssse

Düsen werden vor allem mit den Gewinden nach ISO 228, DIN 2999 (EN 10226-1) und NPT gefertigt. Dabei unterscheidet man zwischen dichtenden und nicht dichtenden Gewinden. Bei nicht dichtenden Gewinden wird PTFE-Band oder eine Gewindepaste zur Abdichtung eingesetzt.

Nicht alle Düsen können mit einem Gewinde angeschlossen werden. Dazu bieten wir Flanschlösungen nach den Normen DIN 2527, EN 1092-1 und ASME B 16.5 an. Auch Aseptik-Klemmverbindungen (Tri-Clamp Anschlüsse) der Norm DIN 11864-3 sind möglich. Ob ein anderer Anschlüss als der Standardanschlüss für eine Düse herstellbar ist, muss im Einzelfall geprüft werden.

11 Verschleiß

Düsenverschleiß hängt im Wesentlichen von den Einsatzbedingungen sowie vom Düsenmaterial ab. In der Regel verschleißt die Flüssigkeitsaustrittsöffnung der Düse in Folge von Materialabtrag. Folgende Einsatzbedingungen können den Verschleiß beschleunigen:

- Anteil und Härte der im Fluid befindlichen Partikel
- Betrieb oberhalb des empfohlenen Druckbereichs
- Einsatz von aggressiven Medien

Die Strahlqualität wird mit zunehmendem Verschleiß stetig schlechter. Mit bloßem Auge ist dies meist sehr einfach zu erkennen. Gleichzeitig kommt es zu einer Veränderung der Sprühparameter, wie z. B. der Zunahme des Volumenstroms. Ursache ist der durch Materialabtrag beschädigte Querschnitt der Düsenöffnung.

Verschleiß führt zu einem schlechteren Produktionsergebnis und zu höheren Kosten. Abb. 10 zeigt ein Beispiel für den starken Verschleiß einer Sprühkugel. Kurze Wartungsintervalle und der Austausch von Düsen sind aus diesen Gründen besonders wichtig für eine konstante Prozessfähigkeit.

Abbildung 10: Chemischer Angriff auf eine Sprühkugel

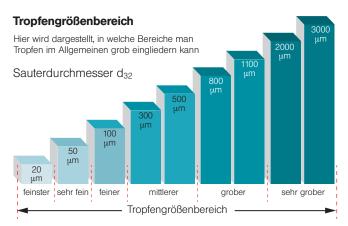


Abbildung 9: Definition der Tropfengröße

12 Mechanische Reinigung

Reinigungseffekte

Reinigungswirkung

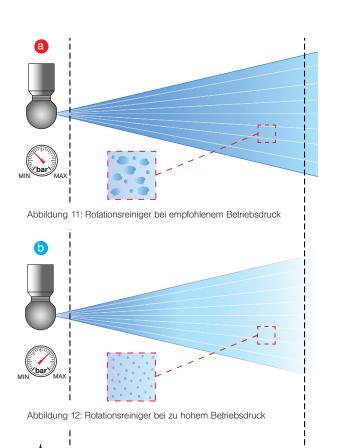
Rotationsreiniger reinigen die Behälterwand durch einen möglichst hohen Impact. Um diesen zu erreichen, müssen große Tropfen mit hoher Geschwindigkeit auftreffen. Auch festsitzende Verunreinigungen, die sich nicht in der Reinigungsflüssigkeit lösen, können so entfernt werden. Wichtige Einflussgrößen sind der Abstand zwischen Düse und Wand sowie der Betriebsdruck. Beide dürfen nicht zu groß werden, da die Flüssig-

keit sonst dazu neigt in kleinere Tropfen zu zerfallen und dadurch an Impact verliert (vgl. Abb. 11 und 12).

Neben dem Impact besitzt auch die an der Behälterwand ablaufende Flüssigkeit eine beträchtliche Reinigungswirkung.

Wenn der gebildete Film dick genug ist, kann die entstehende Schubspannung leichte bis mittelschwere Verunreinigungen entfernen. Sprühschatten stören dabei weniger als bei der Reinigung durch den Impact (vgl. Abb. 13).

Rotationsreiniger oder Sprühkugel?


Aufgrund ihres einfachen Aufbaus sind Sprühkugeln kostengünstig und sehr unanfällig in Bezug auf Störungen. Während Rotationsreiniger fächerartig die gesamte Behälterwand abstrahlen, treffen die Strahlen bei Sprühkugeln nur punktuell auf. Der restliche Bereich wird lediglich durch die Schubspannung der abfließenden Flüssigkeit gereinigt (vgl. Abb. 14).

Der Flüssigkeitsverbrauch ist daher im Vergleich zum Rotationsreiniger erheblich höher. Auch kann der Reinigungs-

prozess je nach Verschmutzungsart/-grad deutlich länger dauern.

Kostenreduzierung durch effiziente Reinigungsverfahren

Genau hier setzen Lechler Düsen und Rotationsreiniger an, die speziell für eine hohe mechanische Reinigungswirkung entwickelt wurden. Ihre höhere Effizienz hilft, die laufenden Kosten für Energie, Reinigungsmittel und Reinigungsdauer dauerhaft zu senken. Eine Einmalinvestition in eine bessere Düsentechnik amortisiert sich somit bereits nach kurzer Zeit.

6

Abstand

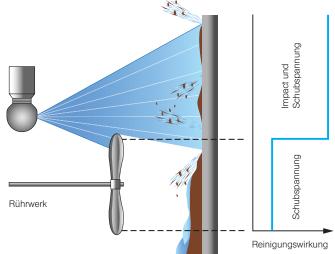


Abbildung 13: Die Reinigungsmechanismen Impact und Schubspannung

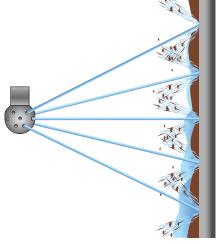


Abbildung 14: Reinigung mit einer Sprühkugel

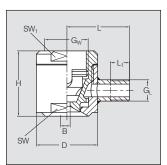
FÜR JEDE ANWENDUNG DIE RICHTIGE DÜSE – DIE WICHTIGSTEN AUSWAHLKRITERIEN IM ÜBERBLICK

Zweistoffdüsen Kriterien für die optimale Düsenauswahl Ein breites Programm an Düsen mit unterschiedlichen Strahlformen steht Ihnen zur Verfügung. Diese Tabelle bietet Ihnen eine Übersicht über die wichtigsten Kriterien, die bei der Auswahl der für Ihre Anwendung geeigneten Düsen entscheidend sind. Außen-Axial-Detaillierte technische Informationen und Bestellmischend Hohlkegeldüsen hinweise zu den jeweiligen Düsenbaureihen finden Sie auf den angegebenen Seiten in dieser Broschüre, bzw. in ergänzenden Informationsunterlagen auf den Seiten 34 und 35. 214 216 218 Baureihe Weiterführende Informationen auf Seite 14 35 35 15 34 16 sehr gering < 0,1 I/min gering 0,1 - 1,5 I/min Volumen-1,5 - 80 I/min mittel strom 80 - 1200 I/min hoch > 1250 l/min sehr hoch feinst $\approx 20 \ \mu m$ sehr fein $\approx 50~\mu m$ fein ≈ 100 µm Tropfengröße mittel $\approx 300 - 500 \, \mu m$ ≈ 800 - 1100 µm grob ≈ 2000 - 3000 µm sehr grob < 45° klein mittel 45 - 80° Strahlwinkel 80 - 120° aroß sehr groß > 120° < 10 bar niedrig Betriebsmittel 10 - 20 bar druck > 20 bar hoch < 20 mPa·s gering Viskosität mittel 20 - 200 mPa·s hoch > 200 mPa·s klein < 2 mm Engster mittel 2 - 8 mm Querschnitt groß > 8 mm

.

Zweistoffdüsen

Baureihe 150


Feine Flüssigkeitszerstäubung mittels Luft oder Dampf.

- Die Flüssigkeit sowie Luft oder Dampf werden unter Druck zugeführt
- Der Luft- bzw. Dampfdruck muss immer über dem Flüssigkeitsdruck liegen
- Ein höheres Luft-/Wasserverhältnis führt zu einer feineren Zerstäubung.

Anwendung:

Chemische Verfahrenstechnik, Kühlvorgänge, Zerstäubung viskoser Flüssigkeiten.

Туре	G _w ISO 228	G _L ISO 228	H [mm]	D [mm]	L [mm]	L₁ [mm]	SW [mm]	SW ₁ [mm]	Gewicht AISI 316Ti
150. 005. 17 bis 150. 013. 17	G 3/8	G 1/4 A	38,0	28,0	32,5	10,0	24,0	24,0	140 g
150. 032. 17	G 1	G 3/8 A	52,0	48,0	49,0	15,0	41,0	41,0	500 g
150. 050. 17 bis 150. 063. 17	G 1 1/4	G 1/2 A	75,0	65,0	58,0	15,0	55,0	55,0	1350 g

\$	Bestell-Nr.		B Ø	E Ø			V [I/	min]					m ³ /h] uft	
<u>e</u>	турс	Mat Nr.	[mm]	[mm]								Lufto	druck	\neg
Strahlwinkel		310T					p [t	oar]				p [bar]	
Str		AISI			0,3	0,5	0,7	1,0	1,5	2,0	1,0	4,0		
20-30°	150. 005	0	1,0	1,0	0,15	0,20	0,24	0,28	0,35	0,40	10	15	20	25
' ' '	150. 007	0	2,0	2,0	0,39	0,50	0,59	0,71	0,87	1,00	10	15	20	25
	150. 009	0	4,0	2,0	0,97	1,25	1,48	1,77	2,17	2,50	10	15	20	25
	150. 010	0	3,5	2,0	1,55	2,00	2,37	2,83	3,46	4,00	10	15	20	25
	150. 013	0	6,0	2,0	3,10	4,00	4,73	5,66	6,93	8,00	10	15	20	25
	150. 032	0	8,0	2,7	3,10	4,00	4,73	5,66	6,93	8,00	31	47	63	80
	150. 050	0	9,0	4,9	6,20	8,00	9,47	11,31	13,86	16,00	60 90 120 150			
	150. 052	0	9,0	4,9	12,20	15,75	18,64	22,27	27,28	31,50	60	90	120	150
	150. 063	0	15,0	4,9	24,40	31,50	37,27	44,55	54,56	63,00	100	150	200	250

 $^{1)}$ Wir behalten uns vor, unter der Material-Nr. 17 das Material AISI 316 oder AISI 316Ti zu liefern. B = Bohrungs-Ø \cdot E = Engster Querschnitt

Bestellbeispiel:	Туре	+	Material-Nr.	=	Bestellnummer
	150. 005	+	17	=	150. 005. 17

Zweistoffdüsen mit Innenmischung

Baureihe 170 / 180

Effiziente Zerstäubung durch Mischung von Flüssigkeit und Gas.

- Innenmischprinzip (Mischkammer im Inneren der Düse vereint ein Gas und eine Flüssigkeit zu einem intensiven Zweiphasengemisch)
- Äußerst feine Zerstäubung bei gutem Regelverhalten
- Große freie Querschnitte
- Geringerer Luftverbrauch als bei außenmischenden Düsen
- Wartungsfreier Betrieb

Anwendung:

Gaskühlung, Luftbefeuchtung, Rauchgasentschwefelung, Sprühtrocknung, Absorption

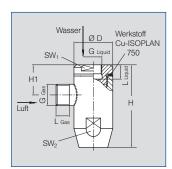
Flüssigkeitsdruck:

1,0 - 5,0 bar

Luftdruck:

1,0 - 5,0 bar

Regelbereich bis max.:


1:30

Strahlwinkel:

Ca. 20°

Die großen freien Querschnitte der Düse ermöglichen einen wartungsfreien Betrieb auch bei der Zerstäubung von viskosen und abrasiven Medien mit hoher Feststoffbeladung.

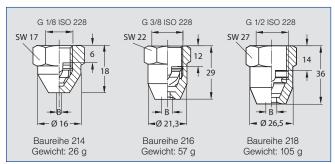
Тур	Н	H ₁	l D	SW ₁		messungen [mr	•	L Liauid	L _{Gas}	Gewicht AISI 316Ti
180.641	48	28	25	22	22	G 1/8	G 3/8	7,5	10	140 g
180.721	81	29,5	38	32	32	G 3/8	G 1/2	14	13	540 g
170.801	81	29,5	38	32	32	G 3/8	G 1/2	14	13	540 g
170.881	81	29,5	38	32	32	G 3/8	G 1/2	14	13	565 g
170.961	112	42	52	46	46	G 1/2	G 3/4	18	15	1275 g

Bestell-N	r.	E Ø mm	E Ø mm		1,0			2,0	_uftdrucl	< p [bar	3,0			4,0	
Туре	Mat. Nr. 1Y	Luft	Wasser	p Wasser [bar]	• Wasser [l/min]	V n Luft [m³/h]	p Wasser [bar]	• Wasser [l/min]	ỷ n Luft [m³/h]	p Wasser [bar]	• Wasser [l/min]	V n Luft [m³/h]	p Wasser [bar]	• Wasser [l/min]	V n Luft [m³/h]
180.641	•	3,0	4,2	0,8 0,9 1,3	0,4 1,0 2,5	20,0 18,0 14,0	1,7 1,9 2,7	0,6 1,5 3,5	32,0 28,0 23,0	2,5 3,2 4,0	0,8 3,0 5,0	43,0 36,0 32,0	3,1 4,6 5,8	0,9 4,0 7,0	55,0 43,0 37,0
180.721	0	3,7	5,0	0,6 0,8 0,9	0,5 2,0 3,5	43,0 37,0 32,0	1,3 1,7 1,9	0,7 3,0 5,5	66,0 55,0 49,0	2,2 2,7 3,1	0,9 4,0 7,5	86,0 74,0 64,0	3,0 3,7 4,2	1,1 6,0 9,0	109,0 86,0 79,0
170.801	•	2,0	5,5	0,7 0,9 1,0	1,0 3,0 5,0	40,0 35,0 32,0	1,5 1,8 2,0	1,0 5,0 10,0	58,0 52,0 48,0	2,2 2,6 3,0	1,2 7,0 14,0	80,0 72,0 63,0	3,2 3,6 4,0	1,2 10,0 20,0	105,0 91,0 83,0
170.881	0	2,8	7,6	0,6 0,8 0,9	1,0 5,0 8,0	60,0 55,0 50,0	1,5 1,7 1,9	1,2 7,0 13,0	95,0 90,0 80,0	2,2 2,5 3,0	1,5 10,0 19,0	130,0 118,0 105,0	3,1 3,5 4,1	1,8 15,0 28,0	171,0 154,0 143,0
170.961	•	3,2	9,5	0,6 0,8 1,0	1,0 5,0 12,0	94,0 85,0 72,0	1,4 1,7 1,9	1,2 10,0 19,0	155,0 130,0 115,0	2,2 2,6 3,0	1,5 15,0 26,0	210,0 179,0 152,0	3,0 3,5 4,1	1,8 20,0 38,0	275,0 220,0 198,0

E = Engster Querschnitt

Bestellbeispiel: Type + Material-Nr. = Bestellnummer 180. 641 + 1Y = 180. 641. 1Y

Axial-Hohlkegeldüsen


Baureihe 214 / 216 / 218

Feine, gleichmäßige Hohlkegelzerstäubung.

Anwendung: Kühlung und Reinigung von Luft und Gasen, Staubbekämpfung, Filterberieselung, Zerstäubungstrocknung, Heißdampfkühlung.

\$	Bestell-Nr.		G	В	E Ø			,	V [l/min]				Strahldurch- messer D
′	Туре	Mat Nr.		[mm]	[mm]								bei p=3bar
<u>e</u>													<u></u>
Strahlwinkel		17 1)							p [bar]				H H
<u>₹</u>		316Ті	228										D—
tra		AISI 3	1802										H =
ဟ		⋖	<u> </u>			0,5	1,0	2,0	3,0	5,0	10,0	20,0	250 mm
60°	214. 184	0	1/8	0,50	0,50	-	-	0,08	0,10	0,13	0,18	0,25	200
80°	214. 245	0	1/8	1,00	0,50	-	-	0,16	0,20	0,25	0,36	0,51	450
	214. 305	0	1/8	1,80	0,50	-	0,23	0,32	0,39	0,51	0,72	1,01	450
60°	216. 324	0	3/8	1,00	1,00	-	0,28	0,40	0,49	0,63	0,89	1,26	200
	216. 364	0	3/8	1,40	1,40	-	0,45	0,63	0,77	1,00	1,41	1,99	200
	216. 404	0	3/8	2,00	2,00	-	0,71	1,00	1,22	1,58	2,24	3,16	200
90°	216. 496	0	3/8	3,00	2,00	-	1,20	1,70	2,08	2,69	3,80	5,38	500
	216. 566	0	3/8	4,00	2,00	-	1,77	2,50	3,06	3,95	5,59	7,91	500
	216. 646	0	3/8	3,50	2,00	2,00	2,83	4,00	4,90	6,32	8,94	12,65	500
	216. 686	0	3/8	4,00	2,00	2,50	3,54	5,00	6,12	7,91	11,18	15,81	500
	216. 726	0	3/8	5,00	2,00	3,15	4,45	6,30	7,72	9,96	14,09	19,92	500
	216. 776	0	3/8	6,00	2,00	4,30	6,00	8,50	10,40	13,40	19,00	26,90	500
	218. 646	0	1/2	5,00	2,00	2,00	2,83	4,00	4,90	6,32	8,94	12,65	500
	218. 706	0	1/2	6,50	2,00	2,80	3,96	5,60	6,86	8,85	12,52	17,71	500
	218. 766	0	1/2	5,00	2,00	4,00	5,66	8,00	9,80	12,65	17,89	25,30	500
	218. 826	0	1/2	6,50	2,00	5,60	7,92	11,20	13,72	17,71	25,04	35,42	500
	218. 846	0	1/2	7,50	2,00	6,25	8,84	12,50	15,31	19,76	27,95	39,53	500
	218. 886	0	1/2	9,00	2,40	8,00	11,31	16,00	19,60	25,30	35,78	50,60	500

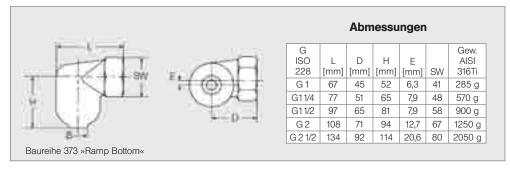
 $^{1)}$ Wir behalten uns vor, unter der Material-Nr. 17 das Material AlSI 316 oder AlSI 316Ti zu liefern. B= Bohrungs-Ø \cdot E= Engster Querschnitt

Bestellbeispiel: Type + Material-Nr. = Bestellnummer 214. 184 + 17 = 214. 184. 17

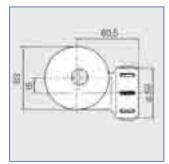
Exzenter-Hohlkegeldüsen

Baureihe 373 »Ramp Bottom«

Gleichmäßige Hohlkegelzerstäubung auch bei niedrigen Drücken.


Anwendung: Kühlung und Reinigung von Gasen, Wasserrückkühlung, Staubbekämpfung, chemische Verfahrenstechnik.

Schnittbild Baureihe 373 »Ramp Bottom«


»Ramp Bottom« Ausführung mit längerer Standzeit durch patentierten, "schräg" geformten Drallraum.

Preisgünstige Kunststoffausführung, für temperaturunempfindliche und abrasionsfreie Einsatzbereiche.

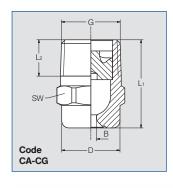
A		Best	ell-Nr.					В			V [I/	min]				chmesser
	Type	Mat Nr.			Code			Ø [mm]							_	=2bar
<u>@</u>		17 1)		228	228		228									_ _
Strahlwinkel		316Ti	ISO 228	1/4 ISO 2	1/2 ISO 2	ISO 228	1/2 ISO 2				p [l	oar]				→¥-
Stra		AISI 3	G 1 18	G 1 1,	G 1 1,	G 2 IS	G 2 1,		0,3	0,5	1,0	2,0	5,0	10,0	H = 500 mm	H = 1000 mm
70°	373. 115	0	AN	-	-	-	-	11,40	24,40	31,50	44,50	63,00	99,60	141,00	650	1300
80°	373. 175	0	AN	-	-	-	-	12,90	31,00	40,00	56,60	80,00	126,00	179,00	800	1550
	373. 235	0	-	AQ	-	-	-	16,20	45,70	59,00	83,40	118,00	187,00	264,00	700	1350
	373. 285	0	-	AQ	-	-	-	20,50	62,00	80,00	113,00	160,00	253,00	358,00	800	1550
	373. 325	0	-	-	AS	-	-	22,20	77,50	100,00	141,00	200,00	316,00	447,00	800	1550
	373. 365	0	-	-	AS	-	-	23,60	67,90	114,00	161,00	227,00	359,00	508,00	700	1400
	373. 415	0	-	-	-	AW	-	25,60	131,00	169,00	238,00	337,00	533,00	754,00	700	1400
	373. 465	0	-	-	-	AW	-	30,70	182,00	235,00	332,00	469,00	742,00	1049,00	965	1800
	373. 505	0	-	-	-	-	AZ	32,50	209,00	270,00	382,00	540,00	854,00	1207,00	800	1500
	373. 515	0	-	-	-	-	AZ	34,80	233,00	301,00	425,00	601,00	950,00	1344,00	900	1700
	373. 555	0	-	-	-	-	AZ	41,10	290,00	375,00	530,00	750,00	1186,00	1677,00	900	1700

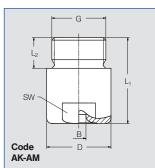
Kunststoffausführung:

90°	309. 236. 5E	Material PVDF	20,00	45,70	59,00	83,40	118,00	187,00	264,00	850	1500
	309. 286. 5E	Material PVDF	24,00	62,00	80,00	113,00	160,00	253,00	358,00	750	1400

Baureihe 490 / 491

Verstopfungsunempfindliches Innendesign. Stabile Strahlwinkel. Besonders gleichmäßige Flüssigkeitsverteilung.


Anwendung: Reinigungs- und Waschprozesse, Flächenberieselung, Behälterreinigung, Schaumniederschlagung, Entgasung von Flüssigkeiten.



Die Baureihe 490/491 stellt eine neue Generation innerhalb der Axial-Vollkegeldüsen dar. Diese Düsen wurden mit modernsten Konstruktionsund Simulationsmethoden (CFD) entwickelt.

Düsen der Baureihe 460/461 werden durch die Baureihe 490/491 ersetzt, sind jedoch auf Anfrage erhältlich.

Code	G	Abmessu L ₁	ingen [mm L ₂] D	SW	Gewicht Ms
CA	EN 10226 R 1/8	18,0	6,5	10,0	11	13 g
CC	EN 10226 R 1/4	22,0	10,0	13,0	14	16 g
CE	EN 10226 R 3/8	24,5	10,0	16,0	17	30 g
CE	EN 10226 R 3/8	30,0	10,0	16,0	17	50 g
CG	EN 10226 R 1/2	32,5	13,0	21,0	22	60 g
CG	EN 10226 R 1/2	43,5	13,0	21,0	22	85 g
AK	G 3/4 A ISO 228	42,0	15,0	32,0	27	190 g
AK	G 3/4 A ISO 228	50,0	15,0	32,0	27	200 g
AM	G 1 A ISO 228	56,0	17,0	40,0	36	350 g

Technische Änderungen vorbehalten. Bitte erfragen Sie bei kritischer Einbausituation die exakten Baumaße!

∢			Best	ell-Nr.						B Ø	E Ø			v	/ [l/mir	1]				ildurch- sser D
,	Туре	Mat	Nr.			Co	ode			[mm]	[mm]									=2bar
ıkel		1Y	30	R 1/8	R 1/4	R 3/8	R 1/2	228	228						[hor]				芍	-
<u>\$</u>		316L		10226 F	10226 F	10226 F	10226 F	3/4A ISO	ISO					р	[bar]				-D-	→
Strahlwinkel		AISI 31	Ms	EN 102	EN 103	EN 103	EN 103		4								. 70		H = 200	H = 500
တ		⋖	2	Ш	Ш	Ш	Ш	Q	Q			0,5	1,0	2,0	3,0	5,0	7,0	10,0	mm	mm
45°	490. 403	0	0	CA	-	-	-	-	-	1,25	1,25	0,57	0,76	1,00	1,18	1,44	1,65	1,90	160	400
	490. 523	0	0	CA	-	-	-	-	-	1,70	1,70	1,15	1,52	2,00	2,35	2,89	3,30	3,81	160	400
	490. 603	0	0	-	СС	CE*	-	-	-	2,00	2,00	1,81	2,39	3,15	3,70	4,54	5,20	6,00	160	400
	490. 643	-	0	-	-	CE	-	-	-	2,45	2,45	2,30	3,03	4,00	4,70	5,77	6,60	7,61	160	400
	490. 683 490. 703	-	0	-	-	CE	-	-	-	2,55 2,65	2,55 2,65	2,87 3.22	3,79 4,24	5,00 5.60	5,88 6,59	7,21 8,08	8,25 9,24	9,52 10,66	160 160	400
	490, 703	0	0	-		CE				2,85	2,85	3,62	4,24	6.30	7,41	9,09	10,40	11,99	160	400
	490. 783	-	0	-	-	-	CG		-	3,45	3,45	5,17	6,82	9,00	10,58	12,98	14,85	17,12	160	400
	490. 843	-	0	-	-	-	CG	-	-	3,80	3,80	7,18	9,47	12,50	14,70	18,03	20,63	23,80	160	400
60°	490. 404	0	0	CA	-	-	-	-	-	1,15	1,15	0,57	0,76	1,00	1,18	1,44	1,65	1,90	220	560
	490. 444	0	-	CA	-	-	-	-	-	1,25	1,25	0,72	0,95	1,25	1,47	1,80	2,06	2,38	220	560
	490. 484	0	0	CA	-	-	-	-	-	1,45	1,45	0,92	1,21	1,60	1,88	2,31	2,64	3,05	220	560
	490. 524	0	0	CA	-	-	-	-	-	1,60	1,60	1,15	1,52	2,00	2,35	2,89	3,30	3,81	220	560
	490. 564	0	0	CA	-	-	-	-	-	1,80	1,80	1,44	1,89	2,50	2,94	3,61	4,13	4,76	220	560
	490. 604	0	0	CA	CC	CE	-	-	-	2,05	2,05	1,81	2,39	3,15	3,70	4,54	5,20	6,00	220	560
	490. 644	0	0	-	CC	CE	-	-	-	2,30	2,30	2,30	3,03	4,00	4,70	5,77	6,60	7,61	220	560
	490. 684 490. 724	0	0	-	CC	CE	-	-	-	2,60	2,60	2,87	3,79	5,00	5,88	7,21	8,25	9,52	220 220	560
	490. 724	0	0	-	СС	CE	-	-	-	2,95 3,25	2,80 3,25	3,62 4,59	4,77 6,06	6,30 8,00	7,41 9,41	9,09	10,40 13,20	11,99 15,22	220	560 560
	490. 764	0	0	-	-	CE		_	-	3,25 3,70	3,70	5,74	7,58	10.00	11,76	14,43	16,51	19,04	220	560
	490. 844	0	0			-	CG		_	4,05	4,05	7,18	9,47	12,50	14,70	18,03	20,63	23,80	220	560
	490, 884	0	0			_	CG	_	_	4,65	4,65	9,19	12,13	16,00	18,82	23,08	26,41	30,46	220	560
	490. 924	0	0	_	_	_	-	AK	_	5,20	5,20	11,49	15,16	20,00	23,52	28,85	33,01	38,07	220	560
	490. 964	0	0	-	-	-	-	AK	-	5,80	5,80	14,36	18,95	25,00	29,40	36,07	41,26	47,59	220	560
	491. 044	0	0	-	-	-	-	-	AM	7,25	7,25	22,97	30,31	40,00	47,04	57,71	66,02	76,15	220	560
	491. 084	0	0	-	-	-	-	-	AM	8,15	8,15	28,72	37,89	50,00	58,80	72,14	82,53	95,18	220	560

Fortsetzung der Tabelle auf der folgenden Seite.

Baureihe 490 / 491

\$			В	estell-	Nr.					В	Е			Ý	/ [l/mir	n]			Strahl	ldurch-
7	Туре	Mat	Nr.			Сс	ode			Ø [mm]	Ø [mm]					-				sser D =2bar
Strahlwinkel		316L 11	30	10226 R 1/8	10226 R 1/4	10226 R 3/8	10226 R 1/2	A ISO 228	ISO 228						p [bar]	 			H=	—————————————————————————————————————
Strak		AISI 31	Ms	EN 10%	EN 10;	EN 10;	EN 10%	G 3/4	G 1A			0,5	1,0	2,0	3,0	5,0	7,0	10,0	200 mm	500 mm
90°	490. 406	0	0	CA	-	-	-	-	-	1,20	1,20	0,57	0,76	1,00	1,18	1,44	1,65	1,90	380	860
	490. 446	-	0	CA	-	-	-	-	-	1,30	1,30	0,72	0,95	1,25	1,47	1,80	2,06	2,38	380	860
	490. 486 490. 526	0	0	CA	-	-	-	-	-	1,45 1,70	1,45 1,55	0,92 1,15	1,21 1,52	1,60 2,00	1,88 2,35	2,31 2,89	2,64 3,30	3,05 3,81	380 380	860
	490, 566		0	CA	_	_	_	_	_	1,70	1,90	1,44	1,89	2,50	2,94	3,61	4,13	4,76	380	860
	490. 606	0	0	CA	-	CE	-	-	-	2,10	2,05	1,81	2,39	3,15	3,70	4,54	5,20	6,00	380	860
	490. 646	0	0	-	CC	CE	-	-	-	2,40	2,40	2,30	3,03	4,00	4,70	5,77	6,60	7,61	390	960
	490. 686	0	0	-	CC	CE	-	-	-	2,70	2,70	2,87	3,79	5,00	5,88	7,21	8,25	9,52	390	960
	490. 726 490. 746	0	0	-	СС	CE	-	-	-	3,20 3,15	2,80 3,15	3,62 4,08	4,77 5,38	6,30 7,10	7,41 8,35	9,09	10,40 11,72	11,99 13,52	390 390	960
	490. 746	0	0		-	CE	_			3,40	3,40	4,08	6,06	8,00	9,41	11,54	13,20	15,22	390	960
	490. 806	0	0	_	_	CE	_	_	_	3,90	3,90	5,74	7,58	10,00	11,76	14,43	16,51	19,04	390	960
	490. 846	0	0	-	-	CE	-	-	-	4,65	4,00	7,18	9,47	12,50	14,70	18,03	20,63	23,80	390	960
	490. 886	0	0	-	-	-	CG	-	-	5,45	4,50	9,19	12,13	16,00	18,82	23,08	26,41	30,46	390	960
	490. 926	0	0	-	-	-	CG	-	-	5,90	4,50	11,49	15,16	20,00	23,52	28,85	33,01	38,07	390	960
	490. 966	0	0	-	-	-	CG	AK	-	6,55	4,85	14,36	18,95	25,00	29,40	36,07	41,26	47,59	390	960
	491. 006 491. 046	0	0	-	-	-	-	AK AK	-	7,55 8,60	5,50 6,60	18,09 22,97	23,87	31,50 40,00	37,05 47,04	45,45 57,71	51,99 66,02	59,97 76,15	390 390	960 960
	491. 046	0	0					AR.	AM	9,45	7,25	28,72	37,89	50,00	58,80	72,14	82,53	95,18	390	960
	491. 126	0	0	_	_	_	_	_	AM	10,40	8,00	36,18	47,75	63,00	74,09	90,89	103,98	119,93	390	960
	491. 146	0	-	-	-	-	-	-	AM	11,00	7,50	40,78	53,81	71,00	83,50	102,43	117,19	135,16	390	960
120°	490. 368	0	0	CA	-	-	-	-	-	0,85	0,65	0,36	0,48	0,63	0,74	0,91	1,04	1,20	680	1220
	490. 408	0	0	CA	-	-	-	-	-	1,20	1,20	0,57	0,76	1,00	1,18	1,44	1,65	1,90	680	1220
	490. 448	0	0	CA	-	-	-	-	-	1,30	1,30	0,72	0,95	1,25	1,47	1,80	2,06	2,38	680	1220
	490. 488	0	0	CA	-	-	-	-	-	1,45	1,45	0,92	1,21	1,60	1,88	2,31	2,64	3,05	680	1220
	490. 528 490. 568	0	0	CA	-		-	-	-	1,70 1,90	1,70 1,90	1,15 1,44	1,52 1,89	2,00 2,50	2,35 2,94	2,89 3,61	3,30 4,13	3,81 4,76	680 680	1220
	490, 608	0	0	CA		_				2,10	2,05	1,81	2,39	3,15	3,70	4,54	5,20	6,00	680	1220
	490. 648	0	0	-	СС	CE	-	-	-	2,40	2,40	2,30	3,03	4,00	4,70	5,77	6,60	7,61	680	1330
	490. 688	0	0	-	СС	CE	-	-	-	2,75	2,75	2,87	3,79	5,00	5,88	7,21	8,25	9,52	680	1330
	490. 728	0	0	-	СС	CE	-	-	-	3,20	2,80	3,62	4,77	6,30	7,41	9,09	10,40	11,99	680	1330
	490. 748	0	0	-	-	CE	-	-	-	3,20	3,20	4,08	5,38	7,10	8,35	10,24	11,72	13,52	680	1330
	490. 768 490. 808	0	0	-	-	CE	-		-	3,45 3,90	3,45 3,90	4,59 5,74	6,44 7,58	8,00 10,00	9,41	11,54 14,43	13,20 16,51	15,22 19,04	680 680	1330
	490. 848	0	0			CE				4,70	4,00	7,18	9.47	12.50	14,70	18,03	20,63	23.80	680	1330
	490. 888		0	_	_	-	CG	-		5,10	4,50	9,19	12,13	16,00	18,82	23,08	26,41	30,46	680	1330
	490. 928	0	0	-	-	-	CG	-	-	5,80	4,75	11,49	15,16	20,00	23,52	28,85	33,01	38,07	680	1330
	490. 968	0	0	-	-	-	CG	AK	-	6,65	4,85	14,36	18,95	25,00	29,40	36,07	41,26	47,59	680	1330
	491. 048	0	0	-	-	-	-	AK	-	9,20	5,85	22,97	30,31	40,00	47,04	57,71	66,02	76,15	680	1330
	491. 128	0	0	-	-	-	-	-	AM	10,80	7,75	36,18	47,75	63,00	74,09	90,89	103,98	119,93	680	1330
	491. 148	0	-	-	-	-	-	-	AM	11,40	7,65	40,78	53,81	71,00	83,50	102,43	117,19	135,16	680	1330

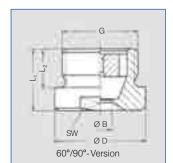
 $\mathsf{B} = \mathsf{Bohrungs}\text{-}\emptyset \cdot \mathsf{E} = \mathsf{Engster} \; \mathsf{Querschnitt}$

Bestellbeispiel: Type + Material-Nr. + Code = Bestellnummer 490. 406 + 1Y + CA = 490. 406. 1Y. CA

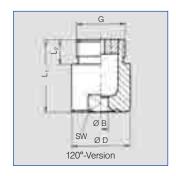
Weitere Düsengrößen und Werkstoffe (Sonderlegierungen, Kunststoffe) auf Anfrage erhältlich.

$$\dot{V}_2 = \dot{V}_1 * \left(\frac{p_2}{p_1}\right)^{0.4}$$

Baureihe 403


Besonders gleichmäßige Vollkegelzerstäubung.

Anwendung: Flächen- und Füllkörperberieselung, chemische Verfahrenstechnik, Reinigungs- und Waschprozesse, Kühlen von gasförmigen und festen Stoffen.



Weitere Düsengrößen und Werkstoffe (Sonderlegierungen, Kunststoffe) auf Anfrage erhältlich.

60°/90°-Version

	Abmessu	ngen [mm	1]		
Type	G ISO 228	L ₁	L ₂	D	SW
403.444/403.446/ 403.484/403.486	G 2 1/2 A	52	27	83	75
403. 524/403. 526	G 3 A	60	30	98	85
403. 564/403. 604/ 403. 606	G 3 1/2 A	70	32	118	105
403. 624	G 4 A	90	36	128	110

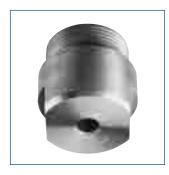
120°-Version

120°-Version					
	Abmessu	ngen [mm	1]		
Туре	G ISO 228	L ₁	L ₂	D	SW
403. 448/403. 488	G 2 1/2 A	124	27	83	75
403. 528	G 3 A	153	30	98	85
403.608	G 3 1/2 A	156	32	118	105
403. 628	G 4 A	165	36	128	110

A	Bestell-Nr.		B Ø	E Ø				V [l/min]					chmesser
	Туре	Mat Nr.	[mm]	[mm]									=2bar
Strahlwinkel		316L						p [bar]				H	H H
Stral		AISI 3			0,3	0,5	H = 0,5 m	H = 1 m					
60°	403. 444	0	25,00	6,00	187	230	303	400	470	577	660	580	1100
	403. 484	0	29,50	9,00	234	297	379	500	588	721	825	620	1150
	403. 524	0	32,00	8,00	295	362	477	630	741	909	1040	620	1150
	403. 564	0	38,00	14,00	375	459	606	800	941	1154	1320	620	1150
	403. 604	0	41,50	10,00	468	574	758	1000	1176	1443	1651	630	1200
	403. 624	0	48,50	15,00	484	625	887	1250	1531	1977	2339	770	1400
90°	403. 446	0	25,00	12,00	187	230	303	400	470	577	660	900	1700
""	403. 486	0	29,50	12,00	234	287	379	500	588	721	825	900	1700
	403. 526	0	32,00	13,80	295	362	477	630	741	909	1040	900	1700
	403. 606	0	40,00	15,00	468	574	758	1000	1176	1443	1651	980	1750
120°	403. 448	0	25,50	10,00	187	230	303	400	470	577	660	1500	2850
	403. 488	0	29,50	11,00	234	287	379	500	588	721	825	1500	2850
	403. 528	0	32,00	15,00	295	362	477	630	741	909	1040	1500	2850
	403. 608	0	42,00	12,00	469	574	759	1000	1176	1443	1651	1550	2850
	403. 628	0	45,00	15,00	585	718	947	1250	1470	1903	2063	1600	2900

 $\mathsf{B} = \mathsf{Bohrungs}\text{-}\varnothing \cdot \mathsf{E} = \mathsf{Engster} \ \mathsf{Querschnitt}$

Bestellbeispiel: Type + Material-Nr. = Bestellnummer 403. 444 + 1Y = 403. 444. 1Y



Baureihe 405

Besonders gleichmäßige Vollkegelzerstäubung.

Anwendung: Flächen- und Füllkörperberieselung, chemische Verfahrenstechnik, Reinigungs- und Waschprozesse, Kühlen von gasförmigen und festen Stoffen, Wasseraufbereitung.

	Alt	messungen [m	m]	
G ISO 228	L ₁	L ₂	D	SW
1 1/4 A	50	19	49	41
1 1/2 A	60	19	59	50
2 A	78	24	68	60

\$	Bestell-	Nr.				B Ø	E Ø			chmesser					
,	Туре	Mat Nr.		Code		[mm]	[mm]							_	=2bar
Strahlwinkel		AISI 316L XI	1/4 A ISO 228	1/2 A ISO 228	A ISO 228						H =	H H			
Str		AIS	1 1/	1 1/	2 A			0,3 0,5 1,0 2,0 3,0 5,0							H = 1 m
60°	405. 204	0	AP	-	-	11,20	5,80	47	57	76	100	118	144	560	1040
	405. 284	0	-	AR	-	14,30	7,00	75	92	121	160	188	231	580	1080
	405. 324	0	-	-	AV	16,40	7,50	94	115	152	200	235	289	580	1080
	405. 364	0	-	-	AV	18,40	8,50	117	144	189	250	294	361	580	1080
	405. 404	0	-	-	AV	20,00	7,00	147	181	239	315	370	454	580	1100
90°	405. 206	0	AP	-	-	12,00	5,00	47	57	76	100	118	144	780	1450
	405. 286	0	-	AR	-	15,20	6,20	75	92	121	160	188	231	800	1550
	405. 326	0	-	-	AV	17,20	7,70	94	115	152	200	235	289	850	1600
	405. 366	0	-	-	AV	19,50	8,70	117	144	189	250	294	361	850	1600
	405. 406	0	-	-	AV	22,00	9,50	147	181	239	315	370	454	850	1600
120°	405. 208	0	AP	-	-	12,70	5,00	47	57	76	100	118	144	1450	2600
	405. 288	0	-	AR	-	16,00	6,60	75	92	121	160	188	231	1500	2700
	405. 328	0	-	-	AV	17,80	7,90	94	115	152	200	235	289	1500	2800
	405. 368	0	-	-	AV	20,10	8,80	117	144	189	250	294	361	1500	2800
	405. 408	0	-	-	AV	22,40	9,10	147	181	239	315	370	454	1500	2800

 $\mathsf{B} = \mathsf{Bohrungs}\text{-} \varnothing \cdot \mathsf{E} = \mathsf{Engster} \ \mathsf{Querschnitt}$

$$\dot{V}_2 = \dot{V}_1 * \left(\frac{p_2}{p_1}\right)^{0.4}$$

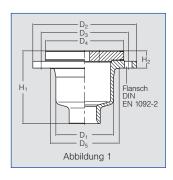
Baureihe 421

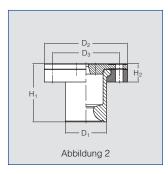
Gleichmäßige Vollkegelverteilung, große Volumenströme.

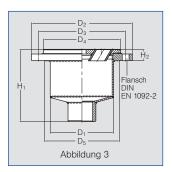
Anwendung: Flächenberieselung, Kühlung und Reinigung von Gasen, Wasserrückkühlung, Kolonnenberieselung sowie zur Verbesserung chemischer Reaktionen durch Oberflächenvergrößerung.

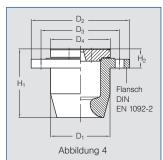
Weitere Düsengrößen und Werkstoffe (Sonderlegierungen, Kunststoffe) auf Anfrage erhältlich.

\$	Bestell-	Nr.			В	E				V [I/	min]		
,	Туре	N	ЛаtN	r.	Ø [mm]	[m							
Strahlwinkel*		05	316Ti	53		Mate				p [t	oar]		
Str		gg	AISI	ЬР		17	05 53	0,3	0,5	1,0	2,0	5,0	10,0
60°	421. 564	0	-	0	37	-	12	375	459	606	800	1154	1523
	421. 604	0	-	0	39	-	14	468	574	758	1000	1443	1904
	421. 624	0	0	0	41	13	13	585	718	947	1250	1803	2380
	421. 644	0	0	0	49	16	16	749	919	1213	1600	2308	3046
	421. 664	0	0	0	56	16	16	936	1149	1516	2000	2885	3807
	421. 684	0	0	0	58	21	21	1171	1436	1895	2500	3607	4759
	421. 704	0	0	0	65	24	24	1475	1809	2387	3150	4545	5997
	421. 724	0	0	0	72	28	30	1873	2297	3031	4000	5771	7615
	421. 744 421. 764	0	0	0	81 88	32 38	34 35	2341 2950	2872 3618	3789 4775	5000 6300	7214 9089	9518 11993
	421. 764 421. 784	-	0	0	99	43	39	3746	4595	6063	8000	11542	15229
	421. 764	-	0		112	46	39	4682	5743	7579	10000	14427	19037
	421. 824	-	0	_	125	52	_	5853	7179	9473	12500	18034	23796
													1523
90°	421. 566 421. 606	0	-	0	37	-	15 14	375 468	459 574	606 758	800 1000	1154 1443	1904
	421. 606 421. 626	0	0	0	39 43	- 18	18	585	718	947	1250	1803	2380
	421. 626	0	0	0	53	22	22	749	919	1213	1600	2308	3046
	421. 666	0	0	0	56	24	24	936	1149	1516	2000	2885	3807
	421. 686	0	0	0	59	28	28	1171	1436	1895	2500	3607	4759
	421. 706	0	0	0	66	32	32	1475	1809	2387	3150	4545	5997
	421. 726	O	0	0	72	36	36	1873	2297	3031	4000	5771	7615
	421. 746	0	0	0	81	40	40	2341	2872	3789	5000	7214	9518
	421. 766	-	0	0	93	42	39	2950	3618	4775	6300	9089	11993
	421. 786	-	0	0	99	47	44	3746	4595	6063	8000	11542	15229
	421. 806	-	0	0	123	53	52	4682	5743	7579	10000	14427	19037
	421. 826	-	0	-	125	58	-	5853	7179	9473	12500	18034	23796
120°	421. 568	0	0	0	36	15	15	375	459	606	800	1154	1523
	421. 608	0	0	0	40	14	14	468	574	758	1000	1443	1904
	421. 628	0	0	0	43	18	18	585	718	947	1250	1803	2380
	421. 648	0	0	0	53	22	22	749	919	1213	1600	2308	3046
	421. 668	0	0	0	55	24	24	936	1149	1516	2000	2885	3807
	421. 688	0	0	0	59	28	28	1171	1436	1895	2500	3607	4759
	421. 708	0	0	0	66	32	32	1475	1809	2387	3150	4545	5997
	421. 728	0	0	0	72	36	35	1873	2297	3031	4000	5771	7615
	421. 748	0	0	0	81	40	40	2341	2872	3789	5000	7214 9089	9518
	421. 768 421. 788		0	0	88 99	42 47	39 44	2950 3746	3618 4595	4775 6063	6300 8000	11542	11993 15229
	421. 788 421. 808		0	0	108	53	52	4682	5743	7579	10000	14427	19037
	421. 828		0	0	121	58	52 54	5853	7179	9473	12500	18034	23796
	421.020				IZI	50	54	0000	1119	94/3	12300	10034	23/90


¹⁾ Wir behalten uns vor, unter der Material-Nr. 17 das Material AISI 316 oder AISI 316Ti zu liefern. • B = Bohrungs-Ø • E = Engster Querschnitt • * Strahlwinkel bei 2 bar






Baureihe 421

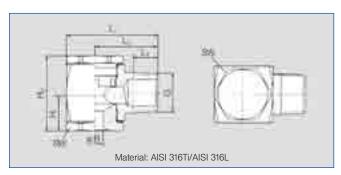
Type	\$	Material-	Abb.			/	Abmessur	ngen [mm	1]			Flanso	chloch
Турс	*	Nr.		D ₁	D ₂	D ₃	D ₄	D ₅	H ₁	H ₂	D _N	Zahl num.	Ø mm
404 50-7		05	4	121	200	160	122	-	140	39	80	8	18
421. 56x/	60°-120°	17	1	96	200	160	122	121	140	39	80	8	18
421. 60x		53	2	99	200	160	-	-	131	44	80	8	18
		05	4	141	220	180	158	-	156	28	100	8	18
421. 62x	60°-120°	17	1	113	220	180	158	141	156	28	100	8	18
		53	2	117	220	180	-	-	157	53	100	8	18
421. 64x/		05	4	166	250	210	188	-	177	41,5	125	8	18
421. 64x/ 421. 66x	60°-120°	17	1	140	250	210	188	166	177	41,5	125	8	18
421. 00X		53	2	141	250	210	-	-	174	57	125	8	18
421. 68x/		05	1 oder 4*	170	285	240	207	195	188	38	150	8	23
421. 70x	60°-120°	17	1	170	285	240	207	195	188	38	150	8	23
421. 70X		53	2	171	285	240	-	-	188	51	150	8	23
	60°-120°	05	1 oder 4*	220	340	295	260	252	250	46	200	8	23
421. 72x/	60°	17	3	214	340	295	260	252	243	35	200	8	23
421. 74x	90°-120°	17	3	214	340	295	260	252	246	38	200	8	23
	60°-120°	53	2	225	340	295	-	-	252	50	200	8	23
421, 76x/	60°	17	3	264	395	350	320	309	290	39	250	12	23
421. 78x	90°-120°	17	3	264	395	350	320	309	291	40	250	12	23
421. /OX	60°-120°	53	2	280	395	350	-	293	300	53	250	12	23
421. 80x/	60°	17	3	315	445	400	348	359	355	39	300	12	23
421. 80x/ 421. 82x	90°-120°	17	3	315	445	400	348	359	356	40	300	12	23
421. 02X	60°-120°	53	2	328	445	400	-	360	369	57	300	12	23

¹⁾ Wir behalten uns vor, unter der Material-Nr. 17 das Material AISI 316 oder AISI 316Ti zu liefern.
*erhältlich als Gussteil (Abb. 1) oder aus Vollmaterial gefertigt (Abb. 4)

Bestellbeispiel: + Material-Nr. = Bestellnummer Туре 421. 564 + 05 421. 564. 05

Tangential-Vollkegeldüsen

Baureihe 422 / 423



Tangentiale Flüssigkeitszuführung. Frei von Einbauten. Verstopfungsunempfindlich. Stabiler Strahlwinkel. Gleichmäßige Zerstäubung.

Anwendung:
Reinigungs- und Waschprozesse, Kühlen von gasförmigen und festen Stoffen,
Flächenberieselung, Mattenbesprühung in Luftwäschern,
Verbesserung chemischer
Reaktionen, Schaumniederschlagung.

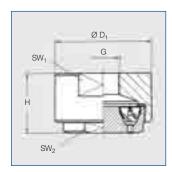
Weitere Düsengrößen und Werkstoffe (Sonderlegierungen, Kunststoffe) auf Anfrage erhältlich.

	Abme	ssunge	n [mm]				Gewicht
G	L ₁	L ₂	L ₃	H ₁	H ₂	SW	AISI 316L
EN 10226 R 1/4	28,0	20,0	10,0	8,0	20,5	12,0	40 g
EN 10226 R 3/8	36,0	25,0	10,0	11,0	26,5	19,0	100 g
EN 10226 R 1/2	48,5	33,5	13,0	20,0	38,5	27,0	235 g
EN 10226 R 3/4	58,0	38,0	14,5	23,5	57,0	36,0	620 g
EN 10226 R 1	76,0	48,5	17,0	27,5	66,0	41,0	1250 g

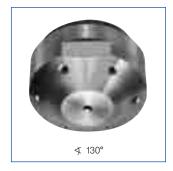
\$	Ве	stell-N	lr.					В	E Ø				durch-					
	Туре	Mat Nr.		Co	de			[mm]	[mm]				bei p=	ser D =2 bar				
Strahlwinkel		17 ¹⁾ IL9IS ISIA	EN 10226 R 1/4	EN 10226 R 3/8	EN 10226 R 1/2	EN 10226 R 3/4	EN 10226 R 1			0,5	1,0	2,0	p [bar]	5,0	7,0	10,0	H = 200 mm	H = 500 mm
60°	422. 644	0	-	CE	-	-	-	3,00	3,00	2,00	2,83	4,00	4,90	6,32	7,48	8,94	225	510
90°	422. 406 422. 486 422. 566	0	CC	-	-	-	- -	1,50 1,90 2,30	1,45 1,80 2,20	0,50 0,80 1,25	0,71 1,13 1,77	1,00 1,60 2,50	1,22 1,96 3,06	1,58 2,53 3,95	1,87 2,99 4.68	2,24 3,58 5,59	380 380 380	860 860 860
	422. 606 422. 646 422. 766	0	-	CE CE CE	-	-	-	2,60 3,00 4,15	2,50 2,90 4,10	1,57 2,00 4,00	2,23 2,83 5,66	3,15 4,00 8,00	3,86 4,90 9,80	4,98 6,32 12,65	5,89 7,48 14,97	7,04 8,94 17.89	380 390 390	860 960 960
	422. 766 422. 846 422. 886 422. 966	0 0	-	CE CE	- - - CG	-	- - -	5,20 5,80 8.00	5,10 5,70 8,00	6,25 8,00 12.50	8,84 11,31 17.68	12,50 16,00 25.00	15,31 19,60 30.62	19,76 25,30 39.53	23,39 29,93 46.77	27,95 35,78 55,90	390 390 390	960 960 960
120°	422. 568 422. 728 422. 808	0 0	CC -	- CE CE	-	-	- - -	2,30 3,70 4,65	2,20 3,60 4,60	1,25 3,15 5,00	1,77 4,45 7,07	2,50 6,30 10,00	3,06 7,72 12,25	3,95 9,96 15,81	4,68 11,79 18,71	5,59 14,09 22,36	680 680 680	1220 1600 1600
	422. 848 422. 888 422. 928	0	-	CE CE	- - CG	-	- - -	5,20 5,80 7,30	5,10 5,70 7,30	6,25 8,00 10,00	8,84 11,31 14,14	12,50 16,00 20,00	15,31 19,60 24,49	19,76 25,30 31,62	23,39 29,93 37,42	27,95 35,78 44,72	680 680 680	1600 1600 1600
	422. 968 423. 008 423.128	0	-	-	CG CG	- - СК	-	8,00 8,70 12.70	8,00 8,70 12,30	12,50 15,75 31,50	17,68 22,27 44,55	25,00 31,50 63,00	30,62 38,88 77,16	39,53 49,81 99,61	46,77 58,93 117.86	55,90 70,44 140,87	680 680 680	1600 1600 1600
	423.208	0	-	-	-	-	СМ	19,00	16,00	50,00	70,71	100,00	122,47	158,11	187,08	223,61	680	1600

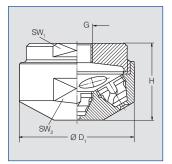
 $^{1)}$ Wir behalten uns vor, unter der Material-Nr. 17 das Material AISI 316 oder AISI 316Ti zu liefern. B = Bohrungs- $\emptyset \cdot$ E = Engster Querschnitt

Baureihe 502 / 503



Feine Vollkegelzerstäubung durch mehrere ineinandersprühende Hohlkegel.


Anwendung:


Kühlen von gasförmigen und festen Stoffen, Heißdampf-kühlung, Chlorgasniederschlagung, Absorption, Staubbindung, Entgasung von Flüssigkeiten sowie Verbesserung chemischer Reaktionen durch Oberflächenvergrößerung.

Ab	messung	en
	1/2"	3/4"
SW ₁	46	65
SW ₂	38	55
Н	25	46
D ₁	50	75
Gewicht	250 g	870 g
(Ms)	250 g	0/0 g

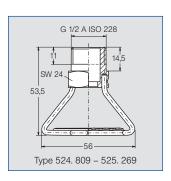
Ab	messung	en
	1/2"	3/4"
SW ₁	27	50
SW ₂	36	55
Н	28	53
D ₁	40	60
Gewicht	150 g	410 g
(Ms)	150 g	410 g

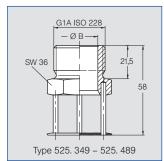
\$	Bestell-Nr.			G	B Ø	E Ø			V [I/	min]				chmesser = 2 bar
	Type	Mat.	Nr.		[mm]	[mm]							- B 30. p	2 50.
Strahlwinkel		17 ¹⁾	30		. 1				p [b	oar]			D -	<u>+</u>
ah!		316Ti		228									H =	H=
Stra		AISI	Ms	OSI			0,5	1,0	2,0	3,0	5,0	10,0	1000 mm	2000 mm
70°	502. 445	•	0	1/2	1,00	0,50	-	-	1,25	1,53	1,98	2,80	400	400
	502. 545	0	0	1/2	1,80	0,50	-	1,58	2,24	2,74	3,54	5,01	400	400
	502. 585	0	0	3/4	1,00	1,00	1,40	1,98	2,80	3,43	4,43	6,30	600	700
	502. 665	0	0	3/4	1,40	1,40	2,20	3,18	4,50	5,51	7,11	10,10	800	900
	502. 745	0	0	3/4	2,00	2,00	3,50	5,00	7,10	8,70	11,20	15,90	800	900
	502. 795	0	0	3/4	2,50	2,00	4,60	6,70	9,50	11,60	15,00	21,20	900	1100
	502. 835	0	0	3/4	3,00	2,00	6,00	8,30	11,80	14,50	18,70	26,40	1000	1200
	502. 875	0	0	3/4	3,50	2,00	7,20	10,60	15,00	18,40	23,70	33,50	1100	1300
	502. 905	0	0	3/4	4,00	2,00	8,80	12,70	18,00	22,05	28,40	40,20	1200	1500
	502. 985	0	0	3/4	3,50	2,00	14,00	19,80	28,00	34,29	44,30	62,60	1200	1500
	503. 025	0	0	3/4	4,00	2,00	17,70	25,10	35,50	43,48	56,10	79,40	1200	1600
	503. 065	0	0	3/4	5,00	2,00	22,10	31,80	45,00	55,11	71,10	100,60	1200	1800
	503. 115	0	0	3/4	6,00	2,00	30,00	42,00	60,00	72,80	95,00	134,00	1300	2000
130°	502. 448	0	0	1/2	1,00	0,50	-	-	1,25	1,53	1,98	2,80	500	500
	502. 548	0	0	1/2	1,80	0,50	-	1,58	2,24	2,74	3,54	5,01	700	700
	502. 588	0	0	3/4	1,00	1,00	1,40	1,98	2,80	3,43	4,43	6,30	800	900
	502. 668	0	0	3/4	1,50	1,50	2,20	3,18	4,50	5,51	7,11	10,10	1000	1100
	502. 748	0	0	3/4	2,00	2,00	3,50	5,00	7,10	8,70	11,20	15,90	1100	1200
	502. 798	0	0	3/4	2,50	2,00	4,60	6,70	9,50	11,60	15,00	21,20	1200	1300
	502. 838	0	0	3/4	3,00	2,00	6,00	8,30	11,80	14,50	18,70	26,40	1400	1600
	502. 878	0	0	3/4	3,50	2,00	7,20	10,60	15,00	18,40	23,70	33,50	1500	1700
	502. 908	0	0	3/4	4,00	2,00	8,80	12,70	18,00	22,05	28,40	40,20	1500	1800
	502. 988	0	0	3/4	3,50	2,00	14,00	19,80	28,00	34,29	44,30	62,60	1500	1800
	503. 028	0	0	3/4	4,00	2,00	17,70	25,10	35,50	43,48	56,10	79,40	1600	1800
	503. 068	0	0	3/4	5,00	2,00	22,10	31,80	45,00	55,11	71,10	100,60	2000	2500
	503. 118	0	0	3/4	6,00	2,00	30,00	42,00	60,00	72,80	95,00	134,00	2000	3000

 $^{1)}$ Wir behalten uns vor, unter der Material-Nr. 17 das Material AISI 316 oder AISI 316Ti zu liefern. B = Bohrungs-Ø \cdot E = Engster Querschnitt

Pralitellerdüse

Baureihe 524 / 525




Vollkegelzerstäubung. Verstopfungsunempfindliche Düse ohne Dralleinsätze.

Anwendung:

Brandschutz und Berieselung, großflächige Beaufschlagung.

4	Bestell-Nr.			B Ø			V [I/	min]				chmesser		
, ,	Туре	Mat	t. Nr.	[mm]			3 bar ca.							
<u> </u>		30	17 ¹⁾			0.0								
Strahlwinkel			316Ті			p [bar]								
Stra		Ms	AISI		0,5	1,0	2,0	3,0	5,0	10,0	H = 1 m	H = 3 m		
180°	524. 809	0	0	4,00	5,00	7,10	10,00	12,20	15,80	22,40	5,60	6,40		
100	524. 939	0	0	5,90	10,60	15,00	21,20	25,90	33,50	47,40	6,00	7,00		
	524. 969	0	0	6,20	12,50	17,70	25,00	30,60	39,50	55,90	8,00	9,00		
	525. 049	0	0	8,00	20,00	28,30	40,00	49,00	63,20	89,40	10,00	13,20		
	525. 109	0	-	9,30	28,00	40,00	56,00	69,00	89,00	125,00	10,20	13,40		
	525. 169	0	-	10,90	40,00	57,00	80,00	98,00	126,00	179,00	10,60	13,60		
	525. 229	0	-	12,20	56,00	79,00	112,00	137,00	177,00	250,00	6,80	10,40		
	525. 269	0	0	12,30	70,00	99,00	140,00	171,00	221,00	313,00	5,20	10,20		
	525. 349	0	0	16,20	112,00	158,40	224,00	274,30	354,20	500,80	4,80	9,70		
	525. 469	0	0	23,80	222,70	315,00	445,50	545,60	704,40	996,20	4,50	9,50		
	525. 489	0	0	25,30	250,00	353,60	500,00	612,40	790,60	1118,00	4,00	9,00		

 $^{1)}$ Wir behalten uns vor, unter der Material-Nr. 17 das Material AISI 316 oder AISI 316Ti zu liefern. B= Bohrungs- \varnothing

Ausführung mit Staubschutzkappe auf Anfrage.

Bestellbeispiel: Type + Material-Nr. = Bestellnummer 524.809 + 30 = 524.809.30

26

Rotationsreiniger »MiniSpinner«

Baureihen 5MI

- Kostengünstig
- Freidrehend
- Effektives Schlitzdesign

Anwendung:

Reinigung von

- Anlagen
- Behältern
- Maschinen

Max. Tankdurchmesser:

3,0 m

Empfohlener Betriebsdruck:

1,0 - 2,5 bar

Max. Temperatur:

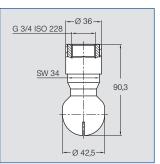
140 °C

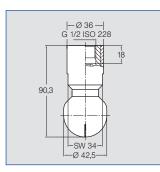
Einbau:

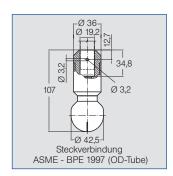
Betrieb in jeder Einbaulage

Werkstoffe:

1Y: AISI 316L und AISI 440C 21: Alloy C-22 und Alloy C-276


Lagerung:


Doppelkugellager 1Y: AISI 440C 21: Alloy C-276


Erforderliche Vorfiltrierung:

Leitungsfilter mit 0.1 mm/170 mesh

Strahl- winkel			E	Bestell-Nr.			E Ø		ý	[l/min]	
willkei	Type	Mat	Nr.		Anschlus	S	[mm]				
		1Y	21								
\ \		AISI 316L	01						p [bar]) (p _{max} =	
\triangleleft		AISI	C-22	G 1/2 ISO 228*	G 3/4 ISO 228*	3/4" Steck- verbindung		1	2	3	bei 40 psi [US gal./min]
60°	5MI.162	0	0	АН	-	TF07	2,6	45	63	77	20
180°	5MI.114	0	0	-	AL	TF07	1,0	47	67	82	21
360°	5MI.054	0	0	-	AL	TF07	0,5	21	30	37	9
	5MI.074	0	0	-	AL	TF07	0,6	35	49	60	15
	5MI.014 5MI.209	0	0		AL AL	TF07 TF07	0,9 1,5	49 71	69 100	85 122	21 31

*NPT-Gewinde auf Anfrage · Weitere Steckanschlussgrößen auf Anfrage. · Anschweiß-Version auf Anfrage. Druckluft nur kurzzeitig zum Trockenblasen einsetzbar. Einsatz oberhalb des empfohlenen Drucks hat negative Auswirkungen auf Reinigungsergebnis und Verschleiß.

Bei Ausführung mit Steckverbindung: Splint aus Edelstahl AISI 316L enthalten. (Bestell-Nr.: 095.022.1Y.50.60 (5MI), 095.013.IE.05.59 (5MC). Je nach Durchmesser des Anschlussstücks kann sich der Volumenstrom aufgrund der Leckage zwischen Anschlussrohr und Rotationsreiniger erhöhen.

Bestellbeispiel: Type + Material-Nr. + Anschluss = Bestellnummer 5MI.162 + 1Y + AH = 5MI.162.1Y.AH

Rotationsreiniger »Whirly«

Baureihe 569

- Freidrehend
- Kraftvolle Flachstrahldüseneinsätze

Anwendung:

Reinigung von

- Anlagen
- Behältern
- Maschinen

Max. Tankdurchmesser:

Spülen: 5,0 m Reinigen: 3,0 m

Empfohlener Betriebsdruck:

1,0 - 2,5 bar

Max. Temperatur:

140 °C

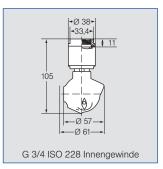
Einbau:

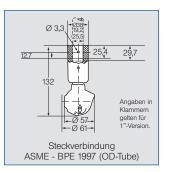
Betrieb in jeder Einbaulage; bei horizontaler Einbaulage Rotation erst ab 2 bar

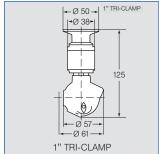
Werkstoffe:

Edelstahl AISI 316L, PEEK und Rulon 641

Lagerung:


Doppelkugellager aus Edelstahl


Erforderliche Vorfiltrierung:


Leitungsfilter mit 0,1 mm/170 mesh

Auch als
Austührung mit
Austührung
ATEX-Zulassung
lieferbar

Strahl-		Ве	stell-Nr.			E Ø	V [l/min]				
winkel	Туре		Anso	hluss		اط [mm]	p [bar] (p _{max} = 6 bar)				
		G 3/4 ISO 228*	3/4" Steckver- bindung	1" Steckver- bindung	1" Tri- Clamp		1	2	3	bei 40 psi [US gal./ min]	
270°	569.055.1Y	AL	TF07	TF10	10	3,6	36	48	62	15	
	569.135.1Y	AL	TF07	TF10	10	4,8	52	71	87	22	
	569.195.1Y	AL	TF07	TF10	10	5,6	69	97	119	30	
270°	569.056.1Y	AL	TF07	TF10	10	3,6	36	48	62	15	
	569.106.1Y	AL	TF07	TF10	10	4,8	41	58	71	18	
	569.196.1Y	AL	TF07	TF10	10	5,6	69	97	119	30	
360°	569.059.1Y	AL	TF07	TF10	10	3,2	36	48	62	15	
	569.139.1Y	AL	TF07	TF10	10	3,6	52	71	87	22	
	569.199.1Y	AL	TF07	TF10	10	4,8	69	97	119	30	
	569.279.1Y	AL	TF07	TF10	10	7,1	103	145	178	45	

E = Engster Querschnitt · *NPT-Gewinde auf Anfrage Anschweißversion auf Anfrage

Druckluft nur kurzzeitig zum Trockenblasen einsetzbar. Einsatz oberhalb des empfohlenen Drucks hat negative Auswirkungen auf Reinigungsergebnis und Verschleiß.

Bei Ausführung mit Steckverbindung: - Splint aus Edelstahl AISI 316L enthalten. (Bestell-Nr.: 095.022.1Y.50.60.E)

 - Je nach Durchmesser des Anschlussstücks kann sich der Volumenstrom aufgrund der Leckage zwischen Anschlussrohr und Rotationsreiniger erhöhen.

Rotationsreiniger »Gyro«

Baureihe 577 / 579

- Selbstdrehender Tankreinigungskopf aus Edelstahl
- Antrieb und Schmierung durch die Reinigungsflüssig-
- Flachstrahldüsenbohrungen für besonders kräftige Rundumreinigung
- Große freie Querschnitte, verstopfungsunempfindlich

Reinigung von

- Anlagen
- Behältern
- Maschinen

Max. Tankdurchmesser: 6,0 m

Empfohlener Betriebsdruck:

1,0 - 3,5 bar, max. 5,0 bar

Max. Temperatur: 90°C

Gewicht:

NPT 1" 750g NPT 2" 1800g NPT 3" 3600g

Werkstoffe:

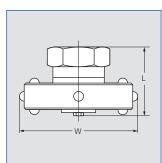
171): 1.4571 (AISI 316 Ti) und PTFE

Lagerung:

Gleitlager aus Teflon® (PTFE)

Zubehör:

Ersatzteilset, bestehend aus:


- obere Dichtung
- untere Dichtung
- Bolzen
- Mutter
- Muffe
- Gebrauchsanweisung

Erforderliche Vorfiltrierung:

Leitungsfilter mit 0,3 mm/50 mesh

Größe	Bestellnummer
NPT 1"	057. 701. 55
NPT 2"	057. 702. 55
NPT 3"	057. 703. 55

4	Bes	tell-Nr.										Effektiver
	Type	А	nschlu	SS			V [l/min]			Abmes	sungen	Reinigungs- durchmesser
nkel							p [bar]					
Strahlwinkel		NPT 1"	NPT 2"	NPT 3"	1	2	3	5	bei 40 psi [US gal/ min]	Länge [mm]	Weite [mm]	Ø [m]
180°	577. 283. 17	BN	-	-	115	163	200	258	50	68	118	4
	577. 363. 17	BN	-	-	182	258	316	408	80	68	118	4
	577. 404. 17	-	BW	-	228	322	394	509	100	103	151	5
	577. 434. 17	-	BW	-	273	386	473	610	120	103	151	5
	577. 524. 17	-	BW	-	452	639	783	1010	170	103	151	5
	577. 564. 17	-	-	MB	564	798	977	1262	250	116	188	6
	577. 594. 17	-		MB	677	958	1173	1515	300	116	188	6
	577. 614. 17	-	-	MB	791	1118	1369	1768	350	116	188	6
180°	579. 284. 17	BN	-	-	115	163	200	258	50	68	118	4
	579. 364. 17	BN	-	-	182	258	316	408	80	68	118	4
[[X]][Z]	579. 404. 17	-	BW	-	228	322	394	509	100	103	151	5
	579. 434. 17	-	BW	-	273	386	473	610	120	103	151	5
	579. 494. 17	-	BW	-	380	538	659	851	170	103	151	5
	579. 564. 17	-	-	MB	564	798	977	1262	250	116	188	6
	579. 594. 17	-	-	MB	677	958	1173	1515	300	116	188	6
	579. 614. 17	-	-	MB	791	1118	1369	1768	350	116	188	6
270°	577. 285. 17	BN	-	-	115	163	200	258	50	68	118	4
	577. 365. 17	BN	-	-	182	258	316	408	80	68	118	4
	577. 405. 17	-	BW	-	228	322	394	509	100	103	151	5
	577. 435. 17	-	BW	-	273	386	473	610	120	103	151	5
	577. 495. 17	-	BW	-	380	538	659	851	170	103	151	5
	577. 566. 17	-	-	MB	564	798	977	1262	250	116	188	6
	577. 596. 17 577. 616. 17	-	-	MB MB	677 791	958 1118	1173 1369	1515 1768	300 350	116 116	188 188	6
	577. 616. 17	-	-	IVID								
360°	577. 289. 17	BN	-	-	115	163	200	258	50	68	118	4
	577. 369. 17	BN	-	-	182	258	316	408	80	68	118	4
V/11/2	577. 409. 17	-	BW	-	228	322	394	509	100	103	151	5
	577. 439. 17	-	BW	-	273	386	473	610	120	103	151	5
	577. 499. 17 577. 569. 17	-	BW	- MB	380 570	538 806	659 987	851 1274	170 250	103 116	151 188	5 6
	577. 569. 17 577. 599. 17	-	-	MB	685	969	1187	1532	300	116	188	6
	577. 599. 17 577. 619. 17	-	-	MB	798	1128	1382	1784	350	116	188	6
	377. 019. 17			IVID	190	1120	1302	1704	330	110	100	U

¹⁾ Wir behalten uns vor, unter der Material-Nr. 17 das Material AISI 316 oder AISI 316Ti zu liefern.
Höherer Druck führt allgemein zu höherem Verschleiß und feinerer Zerstäubung, was sich ungünstig auf das Reinigungsergebnis auswirkt. Druckluft nur kurzzeitig zum Trockenblasen einsetzbar.

Bestellbeispiel:

Type 577. 283. 17. + Anschluss + BN

= Bestell-Nummer = 577. 283. 17. BN

Rotationsreiniger »Teflon® Whirly«

Baureihen 573 / 583

- Hervorragend in korrosiven Umgebungen
- Freidrehend
- Rotierende Vollstrahlen
- Empfohlen für Glas- und Emailtanks

Anwendung:

Reinigung von

- Anlagen
- Behältern
- Maschinen

Max. Tankdurchmesser:

Spülen: 5,0 m Reinigen: 3,0 m

Empfohlener Betriebsdruck:

1,0 - 2,0 bar

Max. Temperatur:

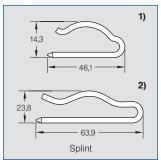
95 °C

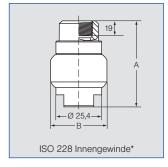
Einbau:

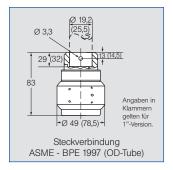
Betrieb in jeder Einbaulage

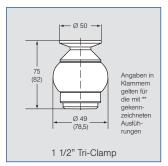
Werkstoff:

PTFE (Teflon®) (Version aus elektrisch leitfähigem Material auf Anfrage)


Lagerung:


Gleitlager aus PTFE


Erforderliche Vorfiltrierung:


Leitungsfilter mit 0,3 mm/50 mesh

Strahl-				Bestel	I-Nr.			E Ø	Ů [l/min]				Höhe	Durch-
Type								[mm]	p [bar] ($p_{max} = 6$ bar) bei			r) bei		messer
\$	Splint		ISO	ISO	Steck- verbin-	Steck- verbin-	1 1/2" Tri- Clamp		1	2	3	40 psi [US gal./ min]	A [mm]	B [mm]
	1)	583.114.55	AL	-	TF07	TF10	15	2,1	47	67	82	21	74	49
	1)	583.264.55	AL	-	TF07	TF10	15	3,3	103	145	178	45	74	49
	2)	583.344.55	-	AN	-	TF10	15**	7,1	159	225	276	70	100	78,5
180°	1)	573.114.55	AL	-	TF07	TF10	15	2,1	47	67	82	21	74	49
	1)	573.264.55	AL	-	TF07	TF10	15	3,3	103	145	178	45	74	49
	2)	573.344.55	-	AN	-	TF10	15**	7,1	159	225	276	70	100	78,5
270°	1)	583.116.55	AL	-	TF07	TF10	15	2,4	47	67	82	21	74	49
	1)	583.266.55	AL	-	TF07	TF10	15	3,4	103	145	178	45	74	49
	2)	583.346.55	-	AN	-	TF10	15**	5,9	159	225	276	70	100	78,5
	1)	573.116.55	AL	-	TF07	TF10	15	2,4	47	67	82	21	74	49
	1)	573.266.55	AL	-	TF07	TF10	15	3,4	103	145	178	45	74	49
	2)	573.346.55	-	AN	-	TF10	15**	5,9	159	225	276	70	100	78,5
360°	1)	583.209.55	AL	-	TF07	TF10	15	3,5	71	100	122	31	74	49
	1)	583.269.55	AL	-	TF07	TF10	15	4,8	103	145	178	45	74	49
	2)	583.279.55	-	AN	-	TF10	15**	3,7	106	150	184	47	100	78,5
	2)	583.349.55	-	AN	-	TF10	15**	5,6	159	225	276	70	100	78,5

E = Engster Querschnitt · *NPT-Gewinde auf Anfrage

Druckluft nur kurzzeitig zum Trockenblasen einsetzbar. Einsatz oberhalb des empfohlenen Drucks hat negative Auswirkungen auf Reinigungsergebnis und Verschleiß. Teflon® ist eine registrierte Handelsmarke von E. I. Dupont de Nemours and Company.

Bei Ausführung mit Steckverbindung: - Splint aus Edelstahl AISI 316L enthalten.

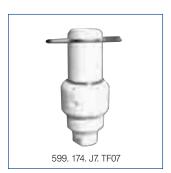
- (Ersatzteil-Nr. Splint 1: 095.022.1Y.50.88.E, Splint 2: 095.022.1Y.50.60.E)

 Je nach Durchmesser des Anschlussstücks kann sich der Volumenstrom aufgrund der Leckage zwischen Anschlussrohr und Rotationsreiniger erhöhen.

Bestellbeispiel: 583.114.55. + Anschluss

+ AL

Bestell-Nummer 583.114.55.AL


Rotationsreiniger aus PTFE, für den Einsatz bei hohen Temperaturen Baureihe 599

- Rotationsreiniger aus PTFE, für den Einsatz bei hohen Temperaturen
- Gleichmäßige Rotation
- Lückenlose Rundumreinigung
- Antrieb und Schmierung durch die Reinigungsflüssigkeit
- Alle verwendeten Materialien sind FDA-konform

Anwendung:

Zum Spülen kleiner bis mittelgroßer Tanks oder Reaktoren, in Prozessen mit hohen Temperaturen.

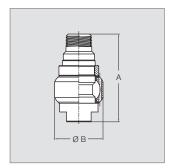
Spülen: 5,0 m Reinigen: 3,0 m

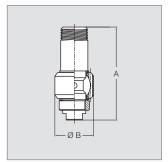
Empfohlener Betriebsdruck:

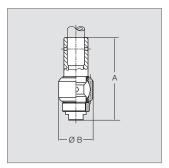
1,0 - 2,0 bar, max. 6,0 bar

Einbau:

Betrieb in jeder Einbaulage


Max. Temperatur:


130 °C


Werkstoffe:

PTFE

■ Ringe: Hastelloy®

\$	Bestell- Type	<u> </u>	hluss		V [I/	min]	A Länge [mm]	B Ø [mm]	Gewicht [g]	
Strahlwinkel		3/4" NPT	3/4" Steckverbindung	1	p [l	oar]	40 psi [US gal./ min]			
360°	599. 133. 55	BK	-	71	100	122	31	89	51	160
	599. 170. 55	BK	-	61	84	103	26	91	38	115
	599. 174. J7	-	TF07	61	84	103	26	91	38	115

Hinweis: Höherer Druck führt allgemein zu höherem Verschleiß und feinerer Zerstäubung, was sich ungünstig auf das Reinigungsergebnis auswirkt. Druckluft nur kurzzeitig zum Trockenblasen einsetzbar.

Bestellbeispiel:	Туре	+	Anschluss	=	Bestellnummer
	599. 133. 55.	+	BK	=	599. 133. 55. BK

Zielstrahlreiniger

Baureihe 5TA / 5TB

- Getriebegesteuert
- Besonders starke Vollstrahlen
- Zwei verschiedene Baugrößen für eine Vielzahl an Behältergrößen
- Betriebsdrücke bis15 bzw. 25 bar möglich

Anwendung:

Reinigung von

- Anlagen
- Maschinen
- Tanklastzügen
- Großen Tanks

Max. Tankdurchmesser:

Siehe Tabelle

Empfohlener Betriebsdruck:

2,0 - 10,0 bar

Temperatur:

95 °C, 130 °C (Umgebung)

Einbau:

Betrieb in jeder Einbaulage

Werkstoffe:

AISI 316L, PEEK, PTFE, EPDM, Zirkonoxid

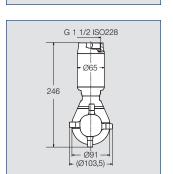
Gewicht:

5TA ca. 0,9 kg 5TB ca. 4,0 kg

Lagerung:

Kugellager

Erforderliche Vorfiltrierung:


Leitungsfilter mit 0,2 mm/80 mesh

Rotationsüberwachung:

Diese Baureihe ist zur Überwachung mit dem Lechler Rotations-Überwachungssensor geeignet.

G 3/4 ISO 228

164

Der neue Lechler Zielstrahlrei-
niger ermöglicht eine sehr effi-
ziente Reinigung von Behäl-
tern und Anlagen. Durch die
starken Vollstrahlen löst er
auch die schwierigsten Reini-
gungsaufgaben.
A cutacurus al ala a la a alaccus di acasa

Aufgrund des hochwertigen und hygienischen Designs ist er für die Verwendung in der Chemie- und Pharmaindustrie besonders geeignet.

Strahl- winkel	Bestell-Nr.	E Ø	Anzahl, Ø Düsen		Volumenst	Max. Tank- durchmesser		
\triangleleft	Туре	[mm]	[mm]	2	5	10	40 psi [US gal./min]	(bei 5 bar) [m]
360°	5TA.403.1Y.AL	1,5	4 x 3,0	25,0	40,0	56,0	7,8	8,0
	5TA.404.1Y.AL	1,5	4 x 4,0	42,0	66,0	93,0	12,9	11,0
	5TA.405.1Y.AL	1,5	4 x 5,0	50,0	79,0	112,0	15,5	12,0

Strahl- winkel	Bestell-Nr.	E Ø	Anzahl, Ø Düsen		Volumenst	Max. Tank- durchmesser		
∢	Туре	[mm]	[mm]	2	5	10	40 psi [US gal./min]	(bei 5 bar) [m]
360°	5TB.406.1Y.AS	6,0	4 x 6,0	107,0	169,0	239,0	33,1	13,0
	5TB.407.1Y.AS	6,0	4 × 7,0	135,0	213,0	302,0	41,9	14,0
	5TB.408.1Y.AS	6,0	4 x 8,0	165,0	261,0	369,0	51,2	14,0

E = Engster Querschnitt

Rotations-Überwachungssensor

Bitte fordern Sie Detailinformationen an.

Hochleistungs-Zielstrahlreiniger

Baureihe 5TM

- Getriebegesteuert
- Besonders starke Vollstrahlen

Anwendung:

Reinigung von

- Anlagen
- Behältern
- Maschinen
- Tanklastzügen
- Großen Tanks

Max. Tankdurchmesser:

Spülen: 24,0 m Reinigen: 15,0 m

Empfohlener Betriebsdruck:

2,0 - 5,0 bar

Max. Temperatur:

60°C

(Version für höhere Temperaturen auf Anfrage)

Einbau:

Betrieb in jeder Einbaulage

Werkstoffe:

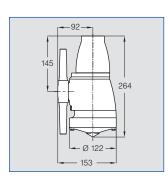
Edelstahl AISI 316L, PTFE und Kohlegraphit

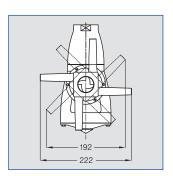
Gewicht:

ca. 7,5 kg

Lagerung:

Kugellager


Erforderliche Vorfiltrierung:


Leitungsfilter mit 0,2 mm/80 mesh

Rotationsüberwachung:

Diese Baureihe ist zur Überwachung mit dem Lechler Rotations-Überwachungssensor geeignet.

Strahl- winkel	Bestell-Nr.	Anschluss G ISO 228	E Ø [mm]	Anzahl, Ø Düsen [mm]	V [l/min] p [bar] (p _{max} = 7 bar)			
₹ 360°		100 220	[]	[]	2	3	5	bei 40 psi [US gal./ min]
	5TM.208.1Y.AS	1 1/2	8	2×8,0	125	153	198	39
	5TM.210.1Y.AS	1 1/2	10	2 x 10,0	160	196	253	50
	5TM.406.1Y.AS	1 1/2	6	4×6,0	140	171	221	43
	5TM.407.1Y.AS	1 1/2	7	4 x 7,0	170	208	269	53
	5TM.408.1Y.AS	1 1/2	8	4×8,0	200	245	316	62
	5TM.410.1Y.AS	1 1/2	10	4 x 10,0	260	318	411	81

E = Engster Querschnitt

Ein Reinigungszyklus dauert abhängig von Type und Druck zwischen 7 bis 41 min.

Rotations-Überwachungssensor

Bitte fordern Sie Detailinformationen an.

WEITERE DÜSEN FÜR DIE ANWENDUNG IN DER CHEMISCHEN INDUSTRIE FINDEN SIE IN UNSEREM SERIENKATALOG ...

Der Katalog "Präzisionsdüsen und Zubehör" ist ein gefragtes Handbuch der Düsentechnologie.

Er enthält wertvolle Arbeitshilfen und umfassende technische Informationen über Lechler-Produkte. Viele dieser Produkte werden in der Chemischen Industrie zur Lösung unterschiedlichster Aufgaben eingesetzt.

Axial-Hohlkegeldüsen	Baureihe	\$	Ѷ [l/min] bei p = 2 bar	Anschluss	Anwendung/ Konstruktion	Katalog Seite
	212	60° 80°	0,015 - 0,46 (bei p = 7 bar)	EN 10226 R 1/4 G 1/4 A ISO 228	Desinfektion, Luftbefeuchtung, Dosierung, Kühlung, Konden- sation, Ölzerstäubung, Absorption. Äußerst feine, nebelartige Zerstäubung.	2.5
Exzenter- Hohlkegeldüsen	Baureihe	≮	Ѷ [l/min] bei p = 2 bar	Anschluss	Anwendung/ Konstruktion	Katalog Seite
	302	60° 80° 90° 130°	0,40 – 25,00	G 3/8 ISO 228	Luftbefeuchtung in Luft- waschern, Staubbekämpfung, Filterberieselung, Schaumniederschlagung, Kühlung. Verstopfungsunempfindliche Düse ohne Dralleinsätze.	2.8 2.9
	304 306 307	90° 130°	5,60 – 33,50	G 1/2 ISO 228 G 3/4 ISO 228	Brandschutz, Absorption, Quenching, Schaumnieder- schlagung. Verstopfungsunempfind- liche Düse ohne Drall- einsätze.	2.12
Vollkegeldüsen	Baureihe	∢	V [I/min] bei p = 2 bar	Anschluss	Anwendung/ Konstruktion	Katalog Seite
	460 461	45° 60° 90° 120°	0,40 – 71,00	EN 10226 R 1/8 EN 10226 R 1/4 EN 10226 R 3/8 EN 10226 R 1/2 G 3/4 A ISO 228 G 1 A ISO 228	Reinigungs- und Wasch- prozesse, Kühlen von gasför- migen und festen Stoffen, Flächenberieselung, Matten- besprühung in Luftwaschern, Verbesserung chemischer Reaktionen. Große freie Querschnitte durch optimierten Flügel- drallkörper	3.5
	405	60° 90° 120°	100,00 – 315,00	G 1 1/4 A ISO 228 G 1 1/2 A ISO 228 G 2 A ISO 228	Flächenberieselung, Füll- körperberieselung, Reini- gungs- und Waschprozesse, chemische Verfahrenstech- nik, Kühlen von gasförmigen und festen Stoffen, Wasser- aufbereitung. Besonders gleichmäßige Vollkegelzerstäubung.	3.7

/ollkegeldüsen	Baureihe	\$	V [l/min] bei p = 2 bar	Anschluss	Anwendung/ Konstruktion	Katalog Seite
	422 423	60° 90° 120°	1,00 – 100,00	EN 10226 R 1/4 EN 10226 R 3/8 EN 10226 R 1/2 EN 10226 R 3/4 EN 10226 R 1	Reinigungs- und Waschprozesse, Kühlen von gasförmigen und festen Stoffen, Flächenberieselung, Mattenbesprühung in Luftwaschern, Verbesserung chemischer Reaktionen, Stranggusskühlung. Frei von Einbauten, verstopfungsunempfindlich.	3.10 3.11
Flachstrahldüsen	Baureihe	\$	V [l/min] bei p = 2 bar	Anschluss	Anwendung/ Konstruktion	Katalog Seite
	632 633	20° 30° 45° 60° 75° 90° 120°	0,05 – 49,96	EN 10226 R 1/8 EN 10226 R 1/4 EN 10226 R 3/8 EN 10226 R 1/2	Spritzreinigung, Oberflächenbehandlung, Siebreinigung, Bandreinigung, Schmiervorgänge, Beschichtungsprozesse. Standardausführung mit konischem, selbstdichtendem Gewinde.	4.8
	616 617	20° 30° 45° 60° 90° 120°	6,30 – 63,00	G 3/4 A ISO 228	Reinigungsanlagen, Regenvorhänge, Spritzrohre, Schaumversprühung. Verstopfungsunempfindlich. Hohe Strahlenergie.	4.15
	686	90° 140°	0,50 – 28,00	EN 10226 R 1/8 EN 10226 R 1/4 EN 10226 R 3/8 EN 10226 R 1/2	Schaumniederschlagung in Kläranlagen, für Reinigungs- und Waschprozesse, Aufbereitungstechnik, Vorbeu- gender Brandschutz. Besonders verstopfungs- unempfindlich.	4.31

...UND IN VERSCHIEDENEN SPEZIALBROSCHÜREN

Für unterschiedliche Themenbereiche, die auch für die Chemische Industrie von besonderem Interesse sind, stehen Informationen in Spezialbroschüren zur Verfügung.

Sämtliche Dokumente können unter **www.lechler.de** heruntergeladen werden. Gerne senden wir Ihnen die Broschüren auch zu.

Lechler GmbH
Präzisionsdüsen · Düsensysteme
Postfach 13 23
72544 Metzingen / Germany
Telefon (071 23) 962 - 0
Telefax (071 23) 962 - 444

E-Mail: info@lechler.de Internet: www.lechler.de

WEITERE NÜTZLICHE INFORMATIONEN UND ARBEITSHILFEN FINDEN SIE UNTER: www.lechler.de

Zusätzliche Informationen über unser gesamtes Leistungsspektrum, über Arbeitshilfen, unsere weltweite Präsenz und vieles mehr finden Sie im Internet — wir freuen uns auf Ihren Besuch.

UNTER http://lechler.partcommunity.com STEHEN 3D-KONSTRUKTIONSDATEN FÜR SIE BEREIT

Für Ihre Entwicklungs- und Konstruktionsarbeit stehen Ihnen kostenlos 3D-Daten von Lechler-Düsen und Zubehör zur Verfügung. Profitieren Sie von den Vorteilen:

- Zeitsparender, direkter Download von Konstruktionszeichnungen und technischen Daten.
- Einfache Produktauswahl analog zum Lechler Printkatalog.
- Vorschaufunktion mit Produktfoto und 3D-Grafik.
- Verfügbar in allen gängigen 3D-Dateiformaten.
- Kostenlose Nutzung nach einmaliger Registrierung.

Mit diesem Service stellt Lechler einmal mehr seine Kompetenz und hohen Ansprüche als Technologieführer unter Beweis.

Nutzen Sie dieses Angebot zur Vereinfachung Ihrer Arbeit. Gerne unterstützen wir Sie dabei.

Lechler weltweit

