

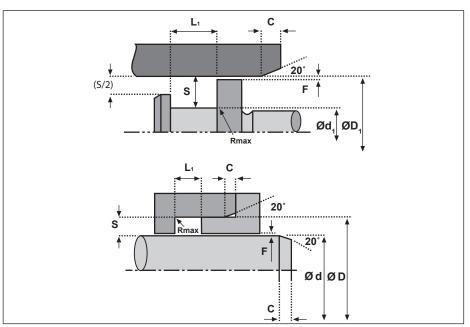
Federelastische Nutringe Typ 119 / 219

Technische Details Katalogseite 196 - 197

Kolben-Nutring-Profile

Profil	Тур	Bemerkung	Standard Werkstoffe	max. Druck	Temperatur- bereich	v max.	Katalogseite
	K119N	Standardprofil				Ş	
	K119A	gerundete Dichtlippen geringste Reibung für höhere Geschwindigkeiten		ich	O	d bis 15 m/s bis 1 m/s	
	K119C	verkürzte, scharfe Abstreiflippe am Außendurchmesser bei abrasiven Medien	spunoc	450 bar dynamisch ır statisch ın Backringen mögli	bis -260 °	oszillierend bis rotierend bis	
	K119S	profilierte Dichtlippen für optimierte Leckagedichtheit bei geringem Verschleiß	FE-Comp	bis ca. 450 bar d' 700 bar statisch n harten Backring	-200 °C	0	
	K219N	Standardprofil mit Helicoil-Vorspannfeder für statische und Vakuum-Anwendungen	Verschiedene PTFE-Compounds UHMW-PE (Polyethylen)		rkstoff vor		231
	K219A	gerundete Dichtlippen für starke Anpressung bei leichter, dynamischer Bewegung z.B. Vakuum-Anwendungen	Versch	von Vakuum bis ca. 450 bar dynamisch bis 700 bar statisch Verwendung von harten Backringen möglich	je nach Werkstoff von -200 °C bis -260 °C	statisch ca. 0,5 m/s	
	K219C	verkürzte scharfe Abstreiflippe am Außendurchmesser mit erhöhter Anpressung		N N	Θ.	stat bis ca.	
	K219S	profilierte Dichtlippe für optimale Dichtwirkung bei langsamer Bewegung					

Stangen-Nutring-Profile


S119N	Standardprofil				Ø	
S119A	gerundete Dichtlippen geringste Reibung für höhere Geschwindigkeiten		÷		l bis 15 m/s bis 1 m/s	
S119C	verkürzte, scharfe Abstreiflippe am Innendurchmesser bei abrasiven Medien	spunos (u	450 bar dynamisch ır statisch n Backringen möglich	is -260 °C	oszillierend rotierend	
S119S	profilierte Dichtlippen für optimierte Leckagedichtheit bei geringem Verschleiß	TFE-Compou (Polyethylen)	bis ca. 450 bar dynar 700 bar statisch n harten Backringen	-200 °C b	8	
S219N	Standardprofil mit Helicoil-Vorspannfeder für statische und Vakuum-Anwendungen	Verschiedene PTFE-Compounds UHMW-PE (Polyethylen)	um bis ca. 4 bis 700 bar ı von harter	stoff von		232
S219A	gerundete Dichtlippen für starke Anpressung bei leichter, dynamischer Bewegung z.B. Vakuum-Anwendungen	Verschie	von Vakuum bis ca. 49 bis 700 bar Verwendung von harten	je nach Werkstoff von -200 °C bis	statisch ca. 0,5 m/s	
S219C	verkürzte scharfe Abstreiflippe am Innenndurchmesser mit erhöhter Anpressung		New Year	<u>e</u>	stat bis ca.	
S219S	profilierte Dichtlippe für optimale Dichtwirkung bei langsamer Bewegung					

EINSATZGEBIETE

- Flug- und Raumfahrtindustrie
- Kraftstoff-Kontrollsysteme
- Medizin- und Labortechnik
- · Hochdruckpumpen und Ventile
- Kompressorenbau
- Öl- und Gasindustrie
- Halbleiterfertigungs-Ausrüstung
- Nahrungsmittelindustrie

Federelastische Nutringe Typ 119 / 219

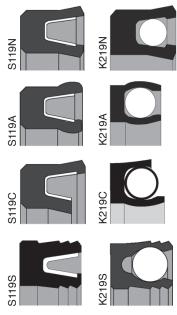
Max. EINSATZBEDINGUNGEN*

Druck dynamisch	bis 450 bar
Druck statisch	bis 700 bar
Geschwindigkeit hin- u. hergehend	bis 15 m/s
Geschwindigkeit rotierend**	bis 1 m/s
Temperaturbereich	-200 °C bis +260 °C

^{*} Die angegebenen Maximalwerte stehen in unmittelbarem Zusammenhang und dürfen nicht gleichzeitig auftreten. Sie sind u.a. auch abhängig vom Medium und dem konstruktiven Spaltmaß. Zusätzlich können harte Backringe verwendet werden.

EINBAUMASSE

TOLERANZEN FÜR EINBAURÄUME					
Ø d ₁ h8 - h9					
Ø D ₁	H8 - H9				
L,	+ 0,2				


RAUTIEFEN							
Abzudichtende Medien Beispiele	Kryotechnik Helium Wasserstoff	Luft, Stickstoff,Argon, Erdgas,Kraftstoffe, Alkohol	Wasser, Öle, Schmier- fett, Milchprodukte, Dichtmassen				
hin- u. hergehend Gleitflächen	$R_a 0.1 - 0.2$ $R_t \le 0.8$	$R_a 0.15 - 0.3$ $R_t \le 1.2$	$R_a 0.2 - 0.4$ $R_t \le 1.6$				
rotierend	R _a 0,05 - 0,1 R _t ≤ 0,4	$R_a 0.1 - 0.2$ $R_i \le 0.8$	$R_a 0.1 - 0.4$ $R_t \le 0.8$				
Statische Flächen	$R_a 0.1 - 0.2 \text{ (Kryo)}$ $R_a 0.3 - 0.6$ $R_i 0.15 - 0.3 \text{ Rt} \le 1.2$ $R_i \le 2.4$		$R_a 0.4 - 0.8$ $R_t \le 3.2$				
Nutflanke	R _a ≤ 2,5						

Der Materialtraganteil Mr für dynamische Flächen soll ca. 80 - 90 % betragen. (Gemessen in einer Schnitttiefe c=25 % des R₋-Wertes, ausgehend von einer gedachten Referenz-Nulllinie, bei der der Traganteil 5 % beträgt) Die Oberflächenhärte der dynamischen Gleitflächen für langsame Linearbewegungen soll mindestens 40 HRC, für schnellere und vor allem für Rotationsbewegungen mindestens 60 - 70 HRC betragen.

EINBAUSCHRÄGEN und RADIEN							
Profilbreite s 1,45 2,25 3,1 4,7 6,1							
Min. Schräge c	4,0	5,0	6,0	7,5	8,5		
R max 0,2 0,3 0,4 0,5							

VORTEILE

- gute Gleiteigenschaften
- kein Stick-Slip und kein "Ankleben" an Metallflächen
- gute Trockenlaufeigenschaften
- hohe und niedrige Temperaturen
- zulässige Werkstoffkombinationen für ein weites Anforderungsgebiet möglich
- beständig gegen fast alle Chemikalien Flüssigkeiten und Gase

BESCHREIBUNG

Die federelastischen, einseitig druckbeaufschlagbaren Dichtelemente des Typs 119 werden überall dort eingesetzt, wo die Grenzen herkömmlicher Dichtungsmaterialen überschritten werden.

Obige Bilder zeigen Typ 119 mit zwei verschiedenen Federvariatonen, welche durch die mechanische Vorspannkraft die Kunststoff-Mantel-Werkstoffe der Dichtprofile dauerhaft unterstützen. Sie erzeugen die gewünschte elastische, aktive Dichtungsvorspannung, ähnlich denen von Dichtelementen aus Elastomeren.

Diese Vorspannkraft wird im Betrieb durch den Systemdruck überlagert. Somit ist die Dichtkraft immer nur so groß, wie es für den anstehenden Druck erforderlich ist.

Aufgrund der verwendeten Werkstoffe, wie z.B. PTFE (Teflon®) und UHMW-PE sind großteils axial offene Einbauräume erforderlich.

Die Ausführungsart ist sehr vielseitig und wird für spezielle Einsatzgebiete ausgelegt, z.B.:

- · Flug- und Raumfahrt
- schnelllaufende Spindelabdichtungen z.B. in Werkzeugmaschinen-Anwendungen (in Pumpen und Ventilen für Heißdampf) aber auch Kryotechnik
- Lebensmittelindustrie
- · Medizin- und Pharmaindustrie
- · Erdölgewinnung und Raffinerien
- · Chemietechnik

MEDIEN

Je nach Werkstoffpaarung sind fast alle aggressiven Gase, Flüssigkeiten und Chemikalien gut beherrschbar. Fragen Sie bitte im Einzelfall unsere technische Beratung.

- physiologisch unbedenklich
- hohe Verschleißfestigkeit
- gute Formstabilität

^{**} Für dauernde Drehbewegung empfehlen wir die Ausführung RS117 mit Klemmflansch.

Federelastische Nutringe Typ 119 / 219

DICHTLIPPENPROFILE:

Profil N (Standardprofil)

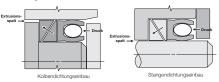
Das abgeschrägte Lippenprofil bietet diehöchste Anpresskraft der Dichtlippe. Hervorragende Dichtheit.

Profil A

Das Radiusprofil zeigt wegen der balligenKontaktfläche geringste Reibung. Absolut Stick - Slip freier Lauf.

Profil C

Die scharfkantige Dichtlippe gleichzeitig alsAbstreiflippe.


Profil S

Das mehrlippige Dichtprofil vereint gute Dicht-wirkung bei geringer Kontaktfläche. Dadurch wird der Verschleiß an den Dichtlippen verringert.

HINWEISE ZUM DICHTSPALT

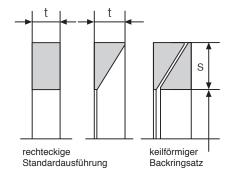
Grundsätzlich soll der Extrusionsspalt auf ein Minimum beschränkt werden. Je höher die Temperatur und der Druck umso wichtiger sind Überlegungen dazu, weil Wärmedehnungen und Rohrblähungen den Dichtspalt zusätzlich vergrößern. Die Dichtringe mit verstärktem Rücken verbessern den Widerstand gegen Extrusion. Eine weitere Möglichkeit ist der Einsatz von Backringen, die üblicherweise aus härterem Material sein sollen als der Mantelwerkstoff der Dichtung.

Beispiele für den Einsatz von keilförmigen Backringsätzen:

Für extrem hohe Drücke und Temperaturen wird empfohlen, einen keilförmigen Backringsatz zu benutzen. Es ist sehr wichtig, die Ecke mit 90° Winkel des Stützringes in Richtung zum Extrusionsspalt einzubauen. Diese Variante wird meist benutzt, wenn sich die radiale Größe des Dichtspalts durch den Systemdruck ändert.

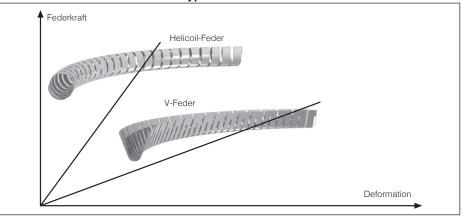
TYPISCHE WERKSTOFFE für die Dichtung

I TPISCHE V	VERKSTOFFE for the Dichling
PTFE/05	Kohle gefülltes Spezial-PTFE-
	Compound für schlecht
	geschmierte Anwendungen.
	Gute Notlaufeigenschaften.
	Für Heißwasser und Dampf.
TFM	TFM ist das "PTFE der zweiten
	Generation" mit optimaler Reduk-
	tion des Kaltflusses und sehr gut
	druckbeständig. Es ist mit ver-
	schiedenen Füllstoffen verfügbar.
UHMW-PE	Ultrahochmolekulares Polyethylen.
	Extrem zäh und verschleißfest.
	Speziell für Tieftemperatur-Ein-
	satz. Ausgezeichnete chemische
	Beständigkeit. Physiologisch
	unbedenklich.


Darüber hinaus stehen viele Werkstoffqualitäten die den Anforderungen angepasst werden zur Verfügung. Fragen Sie unsere Anwendungstechniker.

NUTABMASSE - PROFIL-NENNQUERSCHNITTE								
Nenndurchmesser [mm]		radiale Nenn-	Standard		verstärkter Rücken			
Kolben-Ø D ₁ H8 - H9	Stangen-Ø d ₁ h8 - h9	Profilbreite	Nutlänge Nutring- L ₁ +0,2 höhe		Nutlänge L ₁ +0,2	Nutring- höhe		
6 - 14,9	3 - 9,9	1,45	2,4	2,1	3,9	3,4		
15 - 24,9	10 - 19,9	2,25	3,6	3,1	5,1	4,6		
25 - 44,9	20 - 39,9	3,1	4,8	4,3	6,3	5,6		
45 - 124,9	40 - 119,9	4,7	7,1	6,5	9,2	8,4		
> 125	> 120	6,1	9,5	8,5	11,5	10,5		

	MAX. DICHTSPALT F* (Anhaltswerte für typische Mantelwerkstoffe)							
Druck	[bar]	63	160	250	450			
alt	Standardausführung	0,15	0,05	0,05	-			
Spalt m]	verstärkter Rücken	0,20	0,15	0,10	0,05			
max. [m	mit keilförmigem Backringsatz (z.B. aus PEEK)	0,35	0,25	0,20	0,15			


^{*} Bei Temperaturen größer +80 °C empfehlen wir die Spaltmaße zu reduzieren. Die angegebenen Spaltmaße "F" sind Maximalwerte. Mittenversatz und einseitige Lage des Kolbens oder der Stange beachten!

Backring-Ausführungsbeispiele:

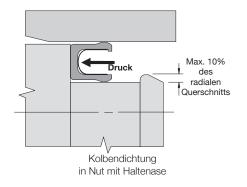
Standard-Backringmaße					
radiale Nenn- profilbreite S	Stützringstärke t				
1,45	1,3				
4,7	1,9				
3,1	2,3				
4,7	2,5				
6,1	3,0				

Hinweise zur Auswahl der Federtype

Im Gegensatz zu der V-Feder besitzt die Helicoil-Feder eine steile Federkennlinie und somit eine vergleichsweise höhere Anpresskraft. PTFE-Dichtungen mit diesem Federtyp werden bei statischer Anwendung bevorzugt und auch dann, wenn Reibung und möglicher Verschleiß gegenüber der zu erzielenden Dichtwirkung zweitrangig sind. Bei der Abdichtung gegen Gas sorgt die höhere Vorspannkraft für ein ausgezeichnetes Dichtverhalten. Da die V-Feder (auch U-Mäanderfeder genannt) aufgrund ihrer flachen Federkennlinie nahezu ohne Spannungsverlust arbeitet und den Nutringen auch eine elastische Charakteristik gibt wird diese Bauform von uns als Standard gefertigt.

Standardwerkstoff für die Federn ist Edelstahl 1.4403.

Aber auch O-Ringe können als elastische Vorspannelemente in der Serie 219 verwendet werden.


Federelastische Nutringe K119 / K219

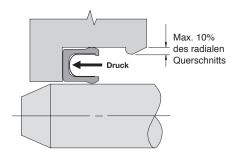
Vorzugs-Standard Einbauräume für Kolbendichtungen


	Ø D	Ød	L,	+0,2	
	Ø D , H8 (H9)	Ø d ₁ h8 (h9)	Standard	verstärkter Rücken	S
	10	7,1	0.4	0.0	
ISO	12	9,1	2,4	3,9	1,45
	15	10,5			
ISO	16	11,5			
	18	13,5	3,6	5,1	2,25
ISO	20	15,5			
	22	17,5			
ISO	25	18,8			
	30	23,8			
ISO	32	25,8		6,3	3,1
	35	28,8			
ISO	40	0 33,8			
	45	35,6			
ISO	50	40,6			
	60	50,6			
ISO	63	53,6			4,7
	70	60,6		9,2	
ISO	80	70,6	7,1		
	90	80,6			
ISO	100	90,6			
	110	100,6			
	115	105,6			
	120	110,6			
ISO	125	112,8			
	140	127,8			
	150	137,8			
ISO	160	147,8			
	180	167,8			
ISO	200	187,87			
	210	197,8			
	220	207,8			
	225	212,8			
	230	217,8	9,5	11,5	6,1
	240	227,8	3,5	11,5	0,1
ISO	250	237,8			
	280	267,8	_		
	300	287,8			
ISO	320	307,8			
	350	337,8			
ISO	360	347,8			
ISO	400	387,7			
ISO	500	487,8			

MONTAGE

Normalerweise sind für die federelastischen Nutringe Typ 119/219 axial offene Einbauräume am günstigsten. Je nach Material und Verhältnis Nennprofil zu Durchmesser können für die Standardausführung des Typs S119N (ohne verstärkten Rücken) auch halb offene Einbauräume zugelassen werden:

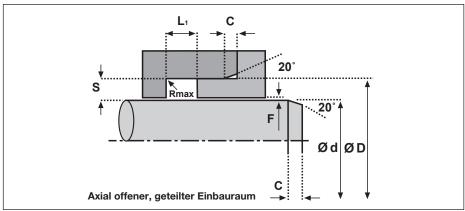
Die gekennzeichneten Abmaße entsprechen den Empfehlungen nach ISO-Norm 3320.


Wenn Sie Ihre Abmaße hier nicht finden, können Sie den Einbauraum nach der Tabelle "Nutmaße-Profil-Nennquerschnitte" leicht selbst ermitteln.

Federelastische Nutringe S119 / S219

MONTAGE

Normalerweise sind für die federelastischen Nutringe Typ 119/219 axial offene Einbauräume am günstigsten.
Je nach Material und Verhältnis Nennprofil zu Durchmesser können für die Standausführung desTyps S 119 N (ohne verstärkten Rücken) auch halboffene Einbauräume zugelassen werden:



Stangendichtungin Nut mit Haltenase

Die gekennzeichneten Abmaße entsprechen den Empfehlungen nach ISO-Norm 3320.

Vorzugs-Standard Einbauräume für Stangendichtungen

	Ø D	αd	L, +0,2			
	Ø D ₁ H8 (H9)	Ø d ₁ h8 (h9)	Standard	verstärkter Rücken	S	
ISO	6	8,9	2,4	3,9	1,45	
ISO	8	10,9	2,4	3,9	1,45	
ISO	10	14,5				
ISO	12	16,5				
ISO	14	18,5	3,6	5,1	2,25	
ISO	16	20,5				
ISO	18	22,5				
ISO	20	26,2				
ISO	22	28,2				
ISO	25	31,2				
ISO	28	34,2	4,8	6,3	3,1	
	30	36,2	.,0	0,0	, .	
ISO	32	38,2				
ISO	35	41,2				
ISO	36	42,2				
ISO	40	49,4				
ISO	45	54,4				
ISO	50	59,4				
100	55	64,4				
ISO	56	65,4	-			
100	60	69,4				
ISO	63	72,4	_			
100	65	74,4		0.0	4.7	
ISO	70	79,4	7,1	9,2	4,7	
100	75	84,4				
ISO	80	89,4	_			
ICO	85	94,4	-			
ISO	90 95	99,4	-			
ISO	100	104,4	-			
ISO	110	109,4 119,4	-			
130	115	124,4	-			
	120	132,2				
ISO	125	137,2				
ISO	140	152,2				
.50	150	162,2				
ISO	160	172,2				
ISO	180	192,2	-			
ISO	200	212,2				
ISO	220	232,2				
130	230	242,2	1			
	240	252,2	9,5	11,5	6,1	
ISO	250	262,2	1			
ISO	280	292,2	1			
	300	312,2				
ISO	320	332,2	1			
	350	362,2	1			
ISO	360	372,2	1			
	400	412,2	1			

Wenn Sie Ihre Abmaße hier nicht finden, können Sie den Einbauraum nach der Tabelle "Nutmaße-Profil-Nennquer-schnitte" leicht selbst ermitteln.